
Understanding Compute-Parameter Trade-offs in Sparse
Mixture-of-Expert Language Models
Harshay Shah2*, Vimal Thilak1*, Dan Busbridge1, Alaaeldin El-Nouby1, Josh Susskind1, Samira Abnar1*
1Apple, 2Massachusetts Institute of Technology (Work done while interning at Apple)
* Core contributors.

Under infinite data setting, scaling model capacity along
with the training compute budget leads to performance
improvements.

Current scaling law studies use parameter count as a
proxy for model capacity. But this is not the only way to
increase capacity.

Compute (FLOPs) “per example” is another way to
increase model capacity (sparse MoEs, Chain-of-though,
universal Transformers).

FLOPs Vs Parameters

Can we draw scaling laws for the optimal trade-
off between parameter count and FLOPs per
example?
• To answer the question we study Mixture-of-

Experts Language Models.
• Sparsity: the ratio of inactive experts to the total

number of experts, which indirectly controls
FLOPs per example in MoEs.

Objectives

In MoEs, the compute per example and
the number of active parameters .

So where S denotes sparsity.

We study scaling laws of compute optimal
models, jointly optimizing Sparsity and total
parameters in MoEs:

Ce ∝ Na
Na ∝ (1 − S) × N

Ce ∝ (1 − S)

Mixture-of-Experts

Scaling Laws for Training Compute Optimal MoEs

Impact of Sparsity on Transfer Conclusions

‣ Trained Mixture-of-Experts Language Models:

‣ Fitted 3d IsoFLOP polynomial surfaces to the data for
each compute budget.

⪆ 500

S ∈ [0.0,0.98] C ∈ [3e + 19,1e + 21] N ∈ [60M,15B]

© 2024 Apple Inc. All rights reserved.

It is crucial to jointly consider both parameters and
FLOPs per example when deriving scaling laws.

 (N*) = arg min
N, S

ℒ(N; C)

 (N*, C*e) = arg min
N, Ce

ℒ(N, Ce; C)

 (N*, S*) = arg min
N, S

ℒ(N, S; C)

Under fixed total training compute budget increasing
sparsity in MoEs leads to smaller FLOPs per example,
higher number of parameters, and lower pretraining loss
simultaneously.

Under conditions where memory, i.e., number of total
parameters, is a constraint, we find that there is an optimal
sparsity value that depends both on the total number of
parameters and total training compute budget.

N* = arg min
N

ℒ(N; S, C)S* = arg min
S

ℒ(S; N, C)

The Interplay between Parameter Count and
Sparsity in MoEs

IsoFLOP slices along Sparsity and Model Size. We use fitted isoFLOP surfaces to analyze how
sparsity S and model size N impact the loss L for a fixed compute budget. Observe that (a) the
optimal sparsity S increases with increasing model size N and converges to 1 while (b) and (c)
show that the optimal model size N and active parameter count Na increase and decrease
respectively with increasing sparsity levels.

Does the recipe for optimally increasing model capacity change as we scale up the
training budget?

We observe no diminishing effect of sparsity as we increase total training

We observe no diminishing effect of sparsity as we increase total training FLOPs.

Denser models perform better on certain types of task that may rely on deeper processing of
the input vs the knowledge stored in the parameters of the model. This indicates the important
role of FLOPs per example in increasing the capacity of the model during inference.

Total parameter count has a more significant role during at
pretraining: when total training FLOPs is fixed, optimal strategy is
to train larger sparser model with fewer FLOPs per example.

FLOPs per example seems to be more important during
inference for specific types of tasks.

MoEs are efficient both in pertaining via improved capacity as
well as inference via smaller number of active parameters. A
potential benefit with lower cost is that MoEs may benefit from
adaptive mechanisms to increase compute per example at
inference, such as Chain of Though (CoT) reasoning.

Questions or comments? Contact us at abnar@apple.com | vtluck@apple.com

