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Under infinite data setting, scaling model capacity along 
with the training compute budget leads to performance 
improvements. 

Current scaling law studies use parameter count as a 
proxy for model capacity. But this is not the only way to 
increase capacity.  

Compute (FLOPs) “per example” is another way to 
increase model capacity (sparse MoEs, Chain-of-though, 
universal Transformers).

FLOPs Vs Parameters

Can we draw scaling laws for the optimal trade-
off between parameter count and FLOPs per 
example? 
• To answer the question we study Mixture-of-

Experts Language Models. 
• Sparsity: the ratio of inactive experts to the total 

number of experts, which indirectly controls 
FLOPs per example in MoEs.

Objectives

In MoEs, the compute per example   and 
the number of active parameters  . 

So   where S denotes sparsity. 

We study scaling laws of compute optimal 
models, jointly optimizing Sparsity and total 
parameters in MoEs: 

Ce ∝ Na
Na ∝ (1 − S) × N

Ce ∝ (1 − S)

Mixture-of-Experts

Scaling Laws for Training Compute Optimal MoEs

Impact of Sparsity on Transfer Conclusions

‣ Trained  Mixture-of-Experts Language Models: 

             

‣ Fitted 3d IsoFLOP polynomial surfaces to the data for 
each compute budget.
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S ∈ [0.0,0.98] C ∈ [3e + 19,1e + 21] N ∈ [60M,15B]

© 2024 Apple Inc. All rights reserved.

It is crucial to jointly consider both parameters and 
FLOPs per example when deriving scaling laws.

 (N*) = arg min
N, S

ℒ(N; C)

 (N*, C*e ) = arg min
N, Ce

ℒ(N, Ce; C)

 (N*, S*) = arg min
N, S

ℒ(N, S; C)

Under fixed total training compute budget increasing 
sparsity  in MoEs leads to smaller FLOPs per example, 
higher number of parameters, and lower pretraining loss 
simultaneously.

Under conditions where memory, i.e., number of total 
parameters, is a constraint, we find that there is an optimal 
sparsity value that depends both on the total number of 
parameters and total training compute budget.

N* = arg min
N

ℒ(N; S, C)S* = arg min
S

ℒ(S; N, C)

The Interplay between Parameter Count and 
Sparsity in MoEs

IsoFLOP slices along Sparsity and Model Size. We use fitted isoFLOP surfaces to analyze how 
sparsity S and model size N impact the loss L for a fixed compute budget. Observe that (a) the 
optimal sparsity S increases with increasing model size N and converges to 1 while (b) and (c) 
show that the optimal model size N and active parameter count Na increase and decrease 
respectively with increasing sparsity levels.

Does the recipe for optimally increasing model capacity change as we scale up the 
training budget?

We observe no diminishing effect of sparsity as we increase total training 

We observe no diminishing effect of sparsity as we increase total training FLOPs.

Denser models perform better on certain types of task that may rely on deeper processing of 
the input vs the knowledge stored in the parameters of the model. This indicates the important 
role of FLOPs per example in increasing the capacity of the model during inference.

Total parameter count has a more significant role during at 
pretraining: when total training FLOPs is fixed, optimal strategy is 
to train larger sparser model with fewer FLOPs per example. 

FLOPs per example seems to be more important during 
inference for specific types of tasks.

MoEs are efficient both in pertaining via improved capacity as 
well as inference via smaller number of active parameters. A 
potential benefit with lower cost is that MoEs may benefit from 
adaptive mechanisms to increase compute per example at 
inference, such as Chain of Though (CoT) reasoning. 
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