
Beyond Closure Models: Learning Chaotic Systems 

via Physics-Informed Neural Operators

Background
Central Task: Estimate Long-term Statistics of Chaotic 

Systems with Coarse-grid Simulations

𝒜: (Nonlinear) Operator;  ℋ: function space of interest.

Attractor Ω: All trajectories {𝑢(⋅, 𝑡)} will converge to it as 𝑡 → ∞.

Invariant Measure:  (average along traj).

Long-term Statistics: 𝔼𝑢∼𝜇∗𝒪(𝑢) for measurement functionals 𝒪.

Learning-based closure models suffers from a large approximation error

independent of model complexity, stemming from the non-uniqueness of

the target mapping.

Leveraging history information and randomness can neither help.

A fundamental limitation for any method following the ansatz 𝒜 + 𝑐𝑙𝑜𝑠𝜃.

To mitigate the nonunique issue, model has to use a large number of

FRS data. The amount of training data is of the same order to estimate

long-term statistics! – eliminating the need for a closure model!

One could not expect the model to generalize among different

dynamics (e.g. different domain shape, different coefficient in the PDE).

• Key information of the physical system at dynamical equilibrium.

• Important in application: airfoil design, climate modeling, etc.

• [REMARK] Impossible to track trajectories for very-long time in chaotic 

system, but possible to estimate statistics (shadowing lemma).

Theoretical Results
Learning-based methods should not follow previous 

closure modeling ansatz 𝒜ഥ𝒖 + 𝒄𝒍𝒐𝒔 ഥ𝒖;𝜽 .

General Methods:

• Straightforward: Fully-Resolved Simulations (FRS)

Numerically simulate with very fine spatio-temporal grids/meshes.

TOO EXPENSIVE! Intractable for most practical problems.

• Estimations statistics with coarse-grid simulation:

Need to account for the large discretization error (i.e. missing information 

from the fine scale).

• Known as Closure Modeling or Coarse-graining.

Scheme of Closure Modeling:

• ℱ: filter from fine grid to coarse grid, e.g. spatial downsampling, Fourier mode 

truncation etc.), viewed as a mapping in function space ℋ.

• Filtered Dynamic  𝜕𝑡𝑢 = ℱ𝒜𝑢 = 𝒜ത𝑢 + ℱ𝒜 −𝒜ℱ 𝑢,  (ത𝑢:= ℱ𝑢).

Unresolved

• Interpretation: 

• Assign a vector field (𝒜 + 𝑐𝑙𝑜𝑠) in the reduced space to drive the dynamics.

How to design closure models?

• Classical Models: hand-designed. Strong physical intuition and assumptions.

• Machine Learning for Closure Models (Hopes: better expressiveness)

• [Learning Framework] Supervised Learning (Single-State Model)

𝑢𝑖: data from fully-resolved (fine-grid) simulations

• [Advanced Variants]

• [Posterior Training] 

• [History-aware Models] Model’s input: 

• [Stochastic Closure Models]

Chuwei Wang, Julius Berner, 

Zongyi Li, Di Zhou, Jiayun Wang, 

Jane Bae, Anima Anandkumar

The newest version:
arxiv.org/abs/2408.05177

Proof Idea: Functional Liouville Flow

• View functions 𝑢 as particles.

• (Infinite-dimensional) Liouville eqn. for analyzing the limit distribution.

Coarse-grid Dynamics that can achieve optimal approx. of 𝜇∗:

, 𝜇𝑡: distribution of 𝑢 ∈ ℋ at time 𝑡.

For CGS and learning closure model, one can only fix a Ƹ𝜇 ∈ 𝒫(ℋ),

and evolve

 Ƹ𝜇 = 𝜇∗: optimal approximation of 𝜇∗ in reduced system (ℱ#𝜇
∗).

In practice, the best model one can yield (assuming sufficient

expressive power of NN function class) corresponds to Ƹ𝜇 = 𝜇𝑑𝑎𝑡𝑎.

Large gap between 𝜇𝑑𝑎𝑡𝑎 and 𝜇∗ for infinite-dim distributions!

Key Takeaway
We need nonlinear interaction between information from different

scales (i.e. resolved part in coarse-grid system and unresolved parts)!

Previous ansatz: 𝒜 + 𝑐𝑙𝑜𝑠 ⋅, 𝜃

New Ansatz:

New Ansatz with Physics-Informed Operator Leaning

Neural Operators

 Resolution-invariant. (Support input from both coarse-grid and fine-grid).

 𝑂(1) jump along time instead of moving with tiny time grids.

The infinitesimal generator of learned operator 𝒢𝜃 plays the role of

 Physics-informed learning + multi-resolution pre-training to reduce reliance on FRS data

(only ~𝟏𝟎𝟐 snapshots from single FRS trajectory vs ~𝟏𝟎𝟓 in previous works).

Theoretical guarantee on optimal estimation of 𝜇∗ with coarse-grid simulations.

(Part of) Experiment Results

Kolmogorov Flow (2D forced Navier-Stokes eqn).


