COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement

Context-Wise Order-Agnostic Language Modeling

Yuxi Xie, Anirudh Goyal, Xiaobao Wu, Xunjian Yin, Xiao Xu, Min-Yen Kan, Liangming Pan, William Yang Wang

Motivation and Contribution

Background

- Iterative Refinement and Self-Correction have emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs).

- Existing approaches typically implement iterative refinement at the application or prompting level, as a multi-turn process relying on next-token prediction based on autoregressive (AR) modeling.

Pros and Cons of Next-Token based AR Language Modeling

Pros:

Simplicity \rightarrow Scalability; Zero-shot Generalization;

Decoding: Sliding Blockwise Order-Agnostic Decoding

Cheap Training Cost; etc.

Cons:

- Sequential generation limits the ability to capture dependencies spanning beyond the immediate next token, especially when requiring **backward** context.

- The sequential nature of AR models leads to high inference **latency**, resulting in computational inefficiency for long sequences

Research Question

Can we unify the strengths of <u>denoising</u> techniques with <u>order-agnostic</u> <u>modeling</u> to enhance the capabilities of AR-LLMs while mitigating their respective limitations?

- VL:varying-length generation
- BT: backtrack / look-ahead
- MV:multi-variable generation
- **MD**:multi-dependency (inter-sample connection) modeling
- **FS**: fitting feasibility
- **EF**: inference efficiency
- IT: mechanism of iterative refinement

Architectures	VL	ВТ	MV	MD	FS	EF	IT
Next-Token AR (Uria et al., 2016)	1	×	X	×	1	×	×
Permutation-Based AR (Uria et al., 2014)	×	1	1	1	×	1	×
NAR (Gu et al., 2018)	×	1	1	1	1	1	1
Diffusion (Ho et al., 2020)	×	1	1	1	1	×	1
Consistency Model (Song et al., 2023)	×	1	1	1	1	1	1
COrAL (Ours)	1	1	1	1	1	1	1

Figure 2: Sliding Blockwise Order-Agnostic Decoding. COrAL performs multi-token prediction and refinement in the sliding block with context window size k = 3 and block size b = 6.

Experiment Result

Result comparison of performance (accuracy%), speed (tokens per second), and cost (seconds per sample) on GSM8K.

Approach	GSM8K							
	Accu.	Speed	Speedup	Cost				
NT	74.1	39.7	$1.0 \times$	3.67				
SC@4	76.2	37.8	-	15.5				
Ours	75.3	43.4	1.1×	3.35				
Ours w/o verifier	72.4 1.7	156.8	$3.9 \times$	0.96				
Ours w/o multi-forward	78.7	14.9	-	9.81				

Quality–Speed Trade-off

Modeling: Context-Wise Order-Agnostic Language Modeling

Training Objective $\log p_{\theta}(\boldsymbol{y} \mid \boldsymbol{x}) \geq \sum \mathbb{E}_{i \in [t-k,t+k]} \mathbb{E}_{l \geq 0} \log p_{\theta}(y_t \mid \boldsymbol{y}_{\leq i}^{(l)}, \boldsymbol{x})$

Target-aware Rotary Position Embedding

$$f(\boldsymbol{q}_m, \mu)^{\top} f(\boldsymbol{k}_n, n) = g(\boldsymbol{q}_m, \boldsymbol{k}_n, \mu - n), \quad \mu \in [m - k, m + k]$$

Figure 3: Context-Wise Order-Agnostic Language Modeling. We visualize the order-agnostic dependencies within a context window size k = 2. For target-aware position encoding, we show how COrAL obtains query representations for multiple positions within a context window size k = 2.

Performance Scaling

BS

dn