LLM Self-Correction with DECRIM

Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints

Thomas Palmeira Ferraz*, Kartik Mehta, Yu-Hsiang Lin, Haw-Shiuan Chang, Shereen Oraby, Sijia Liu, Vivek Subramanian, Tagyoung Chung, Mohit Bansal, Nanyun Peng

Amazon AGI Foundations, Télécom Paris - IP Paris, Meta AI, UNC Chapel Hill, UCLA

About Me

- PhD student at École Polytechnique / Télécom Paris (IP Paris)
- Master MVA (Applied Math & AI) at ENS Paris-Saclay
- Engineering Degree from Universidade de São Paulo
- Research Internships at Apple, Amazon, Meta and Naver Labs.
- Publications on LLMs, Multilingual NLP, Low-Resource NLP, Zero-shot learning, Speech/Text Translation, Robustness.

Do LLMs do exactly what we ask them to?

- de LLMs excel at overall instruction-following!
- OLLMs fail to satisfy all requests in multi-constrained user instructions.
- A Existing benchmarks are synthetic
 - Lacking real-world complexity
 - Artificially hard constraints
 - Potentially leading research in the wrong direction, with results that may not apply to real scenarios.

Our contributions

- **REALINSTRUCT:** The first benchmark using *real user requests* to evaluate LLMs on multi-constrained instruction following.
- DECRIM: The first System-2 self-correction pipeline that improve LLMs to follow multi-constrained instructions, without making any assumptions about the constraints.
- LLM-as-a-Judge: We analyse the success of LLMs as evaluators to benchmark other LLMs and to guide self-correction for multi-constrained instructions.

The REALINSTRUCT benchmark

11 Dataset Construction

- Q Data Filtering: Mining non-code, English user instructions with constraints from a pool of real user conversations with AI.
- 🗩 Decomposition

11 Dataset Construction

- Q Data Filtering: Mining non-code, English user instructions with constraints from a pool of real user conversations with AI.
- Decomposition: Use GPT-4 to break down user requests into Task+Context and Constraints.
- Same Human Validation: Manual validation ensures accuracy of the decomposed data.

Comparison with representative works

Benchmark	Instruction source	Constraints source	Evaluation	Size (Instructions)	Constraint types	Avg.Constraints per Instruction
COLLIE (Yao et al., 2024a)	Synthetic	Synthetic	Rule-based	2,080	13	N/A
IFEval (Zhou et al., 2023a)	Synthetic	Synthetic	Rule-based	541	25	1.4
FollowBench (Jiang et al., 2024)	Crowdsourced + Synthetic	Synthetic	Model-based + Rule-based	795	6	5
InfoBench (Qin et al., 2024)	Crowdsourced	Crowdsourced	Model-based + Rule-based	500	5	4.5
REALINSTRUCT (ours)	Real Users	Real Users	Model-based	302 (test) + 842 (val)	20+	3.5 (test)

03 Decompose, Critique and Refine

The Critique-Refine cycle repeats until all constraints are satisfied or the iteration limit (Nmax) is reached.

Comparison with previous works

- Most self-correction methods require Critic and Refining training.
- Recent prompt-based methods still struggle in real scenarios:
 - Lack specific constraint modeling (e.g., Self-Refine).
 - Make assumptions about constraint, like independence (e.g., BSM and other System 2 methods).
- DECRIM
 - Does not require LLM training for generation/refining.
 - Works with any constraint: does not make assumptions.

04 Experiments and Results

Part I Reliability of LLM-as-a-judge for Constraint Verification

- Are LLMs enough reliable? Or as reliable as humans would be?
 - For Benchmarking on **REALINSTRUCT**.
 - For Criticizing on DeCRIM pipeline.
- Study proprietary and Open-source LLMs
 - Compare performance on **REALINSTRUCT** responses from Mistral and Vicuna
- Different adaptation approaches:
 - Prompt-based approaches (with and without CoT)
 - Mistral Weakly Supervised Fine-tuning

Reliability of LLM-as-a-judge for Constraint Verification

Judge	Cost (USD)	Time (min)	Macro F1 (%)	F1 Neg. (%)	Cohen's Corr. w/ Maj. Vote
Expert (the authors)	-	-	100.0	100.0	0.93
Human 1	300.0	-	85.1	75.9	0.77
Human 2	300.0	-	80.0	66.9	0.66
Majority Vote	-	-	96.4	94.1	1.00
GPT-4	19.5	-	73.7	54.9	0.42
GPT-3.5-Turbo	1.0	-	51.3	16.6	0.09
GPT-4-Turbo	6.5	-	72.6	54.8	0.46
+ CoT	8.3	-	79.0	65.5	0.50
Mistral v0.2		10	50.4	11.4	0.02
+ CoT	-	26	53.7	21.9	0.18
Weakly Supervised	-	236	63.3	39.5	0.28

- GPT-4-Turbo + CoT prompt offers a more performant and cheaper alternative to GPT-4.
 - comparable to human Ο performance.

Corr. GPT-4-Turbo vs. Expert: 0.58 Corr. Human 2 vs. Expert: 0.60

Reliability of LLM-as-a-judge for Constraint Verification

Judge	Cost (USD)	Time (min)	Macro F1 (%)	F1 Neg. (%)	Cohen's Corr. w/ Maj. Vote
Expert (the authors)	-	-	100.0	100.0	0.93
Human 1	300.0	-	85.1	75.9	0.77
Human 2	300.0	-	80.0	66.9	0.66
Majority Vote	-	-	96.4	94.1	1.00
GPT-4	19.5	-	73.7	54.9	0.42
GPT-3.5-Turbo	1.0	-	51.3	16.6	0.09
GPT-4-Turbo	6.5	-	72.6	54.8	0.46
+ CoT	8.3	-	79.0	65.5	0.50
Mistral v0.2		10	50.4	11.4	0.02
+ CoT	-	26	53.7	21.9	0.18
Weakly Supervised	-	236	63.3	39.5	0.28

- **Open-source LLMs offer** lower costs but are unreliable judges.
- **Even Weakly Supervised** Mistral falls short.

We adopt GPT-4-Turbo + CoT for RealInstruct Benchmark

Part II LLMs' ability to follow multi-constrained instructions

Model	Instruction Accuracy	Constraint Accuracy			
GPT-4	78.80%	91.90%			
GPT-3.5-Turbo	73.80%	84.00%			
Mistral 7B v0.2	75.20%	87.80%			
Zephyr 7B β	70.50%	84.70%			
Vicuna 7B v1.3	61.30%	77.80%			

Results on **RealInstruct** - Test Set

- <u>Main</u> We tested representative models, top performant on LLM Leaderboards at the time of study
 - Open LLM Leaderboard, Chatbot Arena

LLMs' ability to follow multi-constrained instructions

Model	Instruction Accuracy	Constraint Accuracy		
GPT-4	78.80%	91.90%		
GPT-3.5-Turbo	73.80%	84.00%		
Mistral 7B v0.2	75.20%	87.80%		
Zephyr 7B β	70.50%	84.70%		
Vicuna 7B v1.3	61.30%	77.80%		

Results on **RealInstruct** - Test Set

• Even the best LLM of the study (GPT-4) fails to meet at least one constraint on **over 21%** of instructions.

LLMs' ability to follow multi-constrained instructions

Model	Instruction Accuracy	Constraint Accuracy
GPT-4	78.80%	91.90%
GPT-3.5-Turbo	73.80%	84.00%
Mistral 7B v0.2	75.20%	87.80%
Zephyr 7Bβ	70.50%	84.70%
Vicuna 7B v1.3	61.30%	77.80%

Results on **RealInstruct** - Test Set

 M Open-source Mistral outperforms proprietary GPT-3.5 but falls short of GPT-4's performance.

LLMs' ability to follow multi-constrained instructions

• 11 LLMs often struggle with constraints involving **numbers**, **negations**, or **long instructions with large number of constraints**.

User Instruction: Write me	e a twitter pos <mark>t with no hasht</mark>	t ags i <mark>naking fun of humai</mark>	nity i n a funny and mean							
tone and promote AI in a holiday theme										
GPT-4	GPT-4-Turbo	GPT-3.5-Turbo	Mistral 7B Instruct v0.2							
This holiday season, let's be thankful AI doesn't need ugly sweaters to stay warm or make embarrassing toasts at parties. ↔ Here's to efficiency and not needing to recharge with eggnoal Cheers	Dec. 25: Humans still can't decide if they're on Santa's naughty or nice list. Meanwhile, I'm on standby to digitally whip up some impeccable holiday cheer. Robots: 1, Human indecision:	Humans and their holiday chaos, always running around like headless chickens! Meanwhile, AI is here to bring order and efficiency to the festive season.	Ho ho ho! 🞅 Just saw humanity's Christmas wishlist: world peace, no hunger, and more streaming services? 📺 🥴 Guess Al's gonna have to wrap up the real gifts this							
to a smarter future! 🥂 #HolidayHumor #CheersToAI	algorithmically-happy New Year! ≵ ☆ #NoTagNeeded	folks! in Sembrace the future, folks! in Sembrace the future, folks! folks! folks!	year. #AIToTheRescue #BahHumbug							

Part III **Grade Structure** Figure 1998 Fi

- Using Mistral as underlying model for DECRIM
- Datasets
 - **REALINSTRUCT** and IFEval (Zhou et al., 2023) (standard on LLM Leaderboards)
- Strong baselines
 - GPT-4, *"Make Sure"* prompt, Self-Refine (Madaan et al., 2023)
 - DECRIM with first generation *"Make Sure"* prompt and N_{max} = 10
- Decomposer and Critic:
 - LLM itself (Self-Decomposer and Self-Critic)
 - Mistral Weakly Supervised as Critic
 - Oracle Critic and Oracle Decomposer

			REALINSTRUCT				IFEval		
Strategy	Decomposer	Critic	Best	Instruction	Constraint	Best	Instruction	Constraint	
			IN	ACC (%)	ACC (%)		ACC (%)	ACC (%)	
GPT-4	-	-	-	78.8	91.9	-	79.3	85.4	
Conv.	-	-	-	75.2	87.8	-	60.1	66.3	Proprietary
Make sure	-	-	-	76.8	88.6	-	60.1	67.2	Baselines
Self-Refine	-	-	2	77.2 (↑0.4)	88.7 (↑0.1)	2	59.5 (↓0.6)	66.4 (↓0.8)	Eairly Comparable
	Self	Self	6	75.2 (↓1.6)	88.9 (†0.3)	4	60.1 (0.0)	67.5 (↑0.3)	Parity Comparable
	Self	Supervised	10	80.5 († 3.7)	90.9 (†2.3)	10	60.8 (10.7)	67.3 (†0.1)	Unrealistic ablation
DeCRIM	Oracle	Self	4	78.5 (†1.7)	90.2 (†1.6)	6	62.3 (†2.2)	69.1 (†1.9)	(upper bound)
(ours)	Oracle	Supervised	10	82.4 (†5.6)	91.7 († 3.1)	10	64.9 (†4.8)	71.6 (†4.4)	
	Oracle	GPT-4	-	-	-	4	68.2 (↑ 8.1)	74.1 (↑6.9)	
	Oracle	Oracle	10	93.7 (†16.9)	95.2 (↑6.6)	8	80.4 (†20.3)	83.5 (†16.3)	

DeCRIM w/ Mistral with strong prompt (*Make sure*) and Nmax = 10

• X LLMs Can't Self-Refine

- Self-Refine baseline, and Self-Critic + Self-Decomposer led to poor results due to low-quality feedback
 - Leads to over-refining good responses while ignoring bad ones.

Weak Critic + Ideal Decomp.

			REALINSTRUCT				IFEval	l	
Strategy	Decomposer	Critic	Best	Instruction	Constraint	Best	Instruction	Constraint	
			N	ACC (%)	ACC (%)	N	ACC (%)	ACC (%)	
GPT-4	-	-	-	78.8	91.9	-	79.3	85.4	
Conv.	-	-	-	75.2	87.8	-	60.1	66.3	Propriotory
Make sure	-	-	-	76.8	88.6	-	60.1	67.2	Proprietary
Self-Refine	-	-	2	77.2 (↑0.4)	88.7 (†0.1)	2	59.5 (↓0.6)	66.4 (↓0.8)	Baselines
	Self	Self	6	75.2 (↓1.6)	88.9 (↑0.3)	4	60.1 (0.0)	67.5 (↑0.3)	Fairly Comparable
	Self	Supervised	10	80.5 (†3.7)	90.9 (†2.3)	10	60.8 (↑0. 7)	67.3 (↑0.1)	Realistic Ablation
DeCRIM	Oracle	Self	4	78.5 (†1.7)	90.2 (†1.6)	6	62.3 (†2.2)	69.1 (†1.9)	Unrealistic ablation (upper bound)
(ours)	Oracle	Supervised	10	82.4 (15.6)	91.7 (13.1)	10	64.9 (↑4.8)	71.6 (†4.4)	(obless second)
	Oracle	GPT-4	_	_	-	4	68.2 (†8.1)	74.1 (↑6.9)	GPT-4 is Weak
			40	077(446.0)					Critic for IFEval
	Oracle	Oracle	10	93.7 (†16.9)	95.2 (†6.6)	8	80.4 (†20.3)	83.5 (†16.3)	Macro F1: 62.9%

DeCRIM w/ Mistral with strong prompt (Make sure) and Nmax = 10

• **6** DECRIM is Effective even with Weak Critic

- Weak but minimally reliable Critic yields performance gains.
- A Better Decomposer also enhances results.
- Combining Better Decomposer + Weak Critic leads to significant improvements.
- **Takeaway:** LLMs benefit from even minimally reliable feedback.

			REALINSTRUCT				IFEval		
Strategy	Decomposer	Critic	Best	Instruction	Constraint	Best	Instruction	Constraint	
			IN	ALC (70)	ALC (70)	IN	ALL (70)	ALL (70)	
GPT-4	-	-	-	78.8	91.9	-	79.3	85.4	
Conv.	-	-	-	75.2	87.8	-	60.1	66.3	Droprioton
Make sure	-	-	-	76.8	88.6	-	60.1	67.2	
Self-Refine	-	-	2	77.2 (↑0.4)	88.7 (†0.1)	2	59.5 (↓0.6)	66.4 (↓0.8)	Baselines
	Self	Self	6	75.2 (↓1.6)	88.9 (†0.3)	4	60.1 (0.0)	67.5 (↑0.3)	
	Self	Supervised	10	80.5 (1,3.7)	90.9 (†2.3)	10	60.8 (↑0.7)	67.3 (↑0.1)	Realistic Adiation
DeCRIM	Oracle	Self	4	78.5 (†1.7)	90.2 (†1.6)	6	62.3 (†2.2)	69.1 (†1.9)	(upper bound)
(ours)	Oracle	Supervised	10	82.4 (↑5.6)	91.7 (†3.1)	10	64.9 (†4.8)	71.6 (†4.4)	
	Oracle	GPT-4	-	-	-	4	68.2 (↑8.1)	74.1 (↑6.9)	
	Oracle	Oracle	10	93.7 (↑16.9)	95.2 (↑6.6)	8	80.4 (†20.3)	83.5 (†16.3)	

DeCRIM w/ Mistral with strong prompt (Make sure) and Nmax = 10

• Provide the second se

- With an Oracle Critic and Decomposer, Mistral outperforms GPT-4 on both datasets.
- Better the feedback -> Better the performance.
- Not following constraints is also a matter of alignment.

Results on the Effectiveness of DECRIM

A DECRIM boosts Response Quality

- Response quality mostly stayed the same, but when changes occurred, the revised versions were often preferred.
- Strong correlation between successful revision and the response quality.
- However, too many revisions can reduce quality.

• 🗾 Computation Overhead

- Mitigation: Refinement triggered only when Critic detects unmet constraints, with ~25% of responses revised after the first pass.
- Need for revision drops exponentially, leading to a sublinear time growth as Nmax increases.

05 Final Remarks

Summary of our Findings

- **Problem is still relevant:** Best LLM (GPT-4) missed at least one constraint on **over 21% of instructions.**
- LLM-as-a-Judge: Proprietary models match human reliability, while open models still lag.
- **DECRIM:** Achieves up to 8% improvement with minimally reliable feedback and up to 34% with high-quality feedback, outperforming proprietary models in all datasets
 - \circ ~ System 2 approaches push LLM capabilities to the limit.
 - Strategies gaining momentum with Sys-2 reasoning models like GPT-o1

Take a photo to learn more about the paper and the presenter:

Thank you! Questions? Suggestions? Want to learn more? Scan the QR code!