

A Two-stage Universal Speech Enhancement System for URGENT 2024 Challenge

Xiaobin Rong^{1,2,*}, Dahan Wang^{1,2,*}, Qinwen Hu^{1,2}, Jing Lu^{1,2}

¹ Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093, China
 ² NJU-Horizon Intelligent Audio Lab, Horizon Robotics, Beijing 100094, China

^{*} These authors contributed equally to this work.

A Two-stage Universal Speech Enhancement System for URGENT 2024 Challenge

Contents

1. Introduction

2. Method description

- 2.1 The overall model architecture
- 2.2 The denoising-dereverberation-declipping (D3) model
- 2.3 The bandwidth extension (BWE) model
- 3. Experiments and results

٠

Fig. The diagram of the URGENT task.

> Overview

(1) Denoising-Dereverberation-Declipping (D3) stage

- Sampling-frequency-independent (SFI):
 - Using TF-GridNet^[1]
 - Using fixed-duration STFT window/hop sizes
- Trained on 16 kHz data, and inferred on data with various sampling rates
- Fine-tuning the model with loss functions on log-spectral distances (LSD) and Mel-cepstral distances (MCD)

(2) Bandwidth Extension (BWE) stage

- Upsampling to 48 kHz \rightarrow performing BWE \rightarrow downsampling back to the original sampling rate
- Channel-wise subband (CWS)^[2] processing: To divide the fullband complex spectrum into 3 subbands and concatenate them in the channel dimension
- Generative adversarial training:
 - Using TF-GridNet as the generator
 - Using multi-band and multi-resolution discriminators^[3]

Wang Z, et al. TF-GridNet: Making time-frequency domain models great again for monaural speaker separation. In *ICASSP 2023-2023*(pp. 1-5). IEEE.
 Hao L, et al. Channel-wise subband input for better voice and accompaniment separation on high resolution music. *In Proc. Interspeech, 2020*, pp. 1241–1245.
 Liu W, Shi Y, Chen J, et al. Gesper: A Restoration-Enhancement Framework for General Speech Reconstruction[J]. arXiv preprint arXiv:2306.08454, 2023.

2.1 The overall model architecture

Fig. The diagram of our proposed two-stage universal speech enhancement system.

Wang Z, et al. TF-GridNet: Making time-frequency domain models great again for monaural speaker separation. In *ICASSP 2023-2023*(pp. 1-5). IEEE.
 Liu W, Shi Y, Chen J, et al. Gesper: A Restoration-Enhancement Framework for General Speech Reconstruction[J]. arXiv preprint arXiv:2306.08454, 2023.

2.1 The overall model architecture

Fig. The diagram of our proposed two-stage universal speech enhancement system.

Wang Z, et al. TF-GridNet: Making time-frequency domain models great again for monaural speaker separation. In *ICASSP 2023-2023*(pp. 1-5). IEEE.
 Liu W, Shi Y, Chen J, et al. Gesper: A Restoration-Enhancement Framework for General Speech Reconstruction[J]. arXiv preprint arXiv:2306.08454, 2023.

2.2 The D3 model

Fig. The diagram of the D3 stage.

A Two-stage Universal Speech Enhancement System for URGENT 2024 Challenge

2.2 The D3 model

Declipping can be regarded as a denoising task in the STFT domain^[1].

Fig. Clipping effect on a single sinusoidal signal $c = x_c - x$, x: non-clipped signal, x_c : clipped signal.

A Two-stage Universal Speech Enhancement System for URGENT 2024 Challenge

2.2 The D3 model

Table. Configuration of the TF-GridNet in D3 stage.

Configuration	value
n_layers	10
emb_dim	96
lstm_hidden_units	200
attn_n_head	8
attn_qk_output_channel	4

Declipping can be regarded as a denoising task in the STFT domain^[1].

Fig. Clipping effect on a single sinusoidal signal $c = x_c - x$, x: non-clipped signal, x_c : clipped signal.

A Two-stage Universal Speech Enhancement System for URGENT 2024 Challenge

Table. Configuration of the TF-GridNet in D3 stage.

2.2 The D3 model

Configuration	value
n_layers	10
emb_dim	96
lstm_hidden_units	200
attn_n_head	8
attn_qk_output_channel	4

Declipping can be regarded as a denoising task in the STFT domain^[1].

Fig. Clipping effect on a single sinusoidal signal $c = x_c - x$, x: non-clipped signal, x_c : clipped signal.

Superscripts, subscripts and modifiers: r: the real part of the spectrogram.

i: the imaginary part of the spectrogram.

 $\hat{\cdot}$: the enhanced speech.

Hybrid loss:
$$\mathcal{L}_{h} = 0.001 \mathcal{L}_{SISNR}(\hat{s}, s) + 0.7 \mathcal{L}_{mag}(\hat{S}, S) + 0.3 \left[\mathcal{L}_{r}(\hat{S}, S) + \mathcal{L}_{i}(\hat{S}, S) \right]$$

 $\mathcal{L}_{SISNR} = -SISNR(\hat{s}, s)$ $\mathcal{L}_{mag} = \mathbb{E} \left[\left(|\hat{S}|^{0.3} \right)^{2} - \left(|S|^{0.3} \right)^{2} \right]$ $\mathcal{L}_{r/i} = \mathbb{E} \left[\left(\frac{\hat{S}_{r/i}}{|\hat{S}|^{0.7}} \right)^{2}, \left(\frac{S_{r/i}}{|S|^{0.7}} \right)^{2} \right]$

Fine-tuning loss: $\mathcal{L}_{f} = \mathcal{L}_{h} + 0.02\mathcal{L}_{LSD} + 0.0005\mathcal{L}_{MCD}$

A Two-stage Universal Speech Enhancement System for URGENT 2024 Challenge

2.3 The BWE model

Fig. The diagram of the BWE stage.

Liu W, Shi Y, Chen J, et al. Gesper: A Restoration-Enhancement Framework for General Speech Reconstruction[J]. arXiv preprint arXiv:2306.08454, 2023.
 Wang Z, et al. TF-GridNet: Making time-frequency domain models great again for monaural speaker separation. In *ICASSP 2023-2023*(pp. 1-5). IEEE.

2.3 The BWE model

Generator loss^[1]:

$$\mathcal{L}_{G} = \mathcal{L}_{S}(\hat{S}, S) + \mathcal{L}_{S}(\hat{S}^{sub}, S^{sub}) + \mathcal{L}_{adv}(\hat{s}) + 0.1\mathcal{L}_{feat}(\hat{s}, s)$$

$$\mathcal{L}_{S}(\hat{S}, S) = \sum_{R} \left[\left\| \log \hat{S}_{R} - \log S_{R} \right\|_{1} + \frac{\left\| S_{R} - \hat{S}_{R} \right\|_{2}}{\left\| \hat{S}_{R} \right\|_{2}} \right]$$

$$\mathcal{L}_{adv}(\hat{s}) = \mathbb{E} \left[(1 - D(\hat{s}))^{2} \right]$$

$$\mathcal{L}_{feat}(\hat{s}, s) = \mathbb{E} \left[\frac{1}{L} \sum_{l=0}^{L-1} \left| D^{l}(s) - D^{l}(\hat{s}) \right| \right]$$

Discriminator loss:

$$\mathcal{L}_{D}(\hat{s},s) = \mathbb{E}\left[\left(D(s)-1\right)^{2} + \left(D(\hat{s})\right)^{2}\right]$$

Table. Configuration of the TF-GridNet in BWE stage.

Configuration	value
n_layers	5
emb_dim	48
lstm_hidden_units	100
attn_n_head	4
attn_qk_output_channel	2

Superscripts, subscripts and modifiers:

- L: the number of the discriminator's layer.
- R: the resolution of STFT.
- D: the discriminator.

Experiments configurations

Configuration		value					
Frame length		32 ms					
Hop length		16 ms					
т : ,	D3/BWE	Max: 5e-4; Min: 5e-6					
Learning rate	Fine-tuning of D3	Max: 1e-4; Min: 1e-6					
Warmun stong	D3/BWE	Warmup (warmup steps: 20 K)					
warmup steps	Fine-tuning of D3	Warmup (warmup steps: 20 K)					
Training steps	D3/BWE	200 K					
	Fine-tuning of D3	3 K					
Training segment	D3	4 s					
length	BWE	2 s					
Datah siza	D3	8					
Batch size	BWE	24					
Madalaiza	D3	22.09 M					
widdel size	BWE	2.77 M					

> Experimental results

	Non-intrusive		Intrusive					Downstream-task- independent		Downstream-task- dependent	
Method	DNSMOS	NISQA	PESQ	ESTOI	SDR	MCD	LSD	BERT	LPS	Spksim	WAcc
D3	3.05	3.68	2.92	0.86	16.58	3.67	3.51	0.863	0.888	0.750	88.39
+ FT with LSD & MCD	3.07	3.57	2.89	0.86	16.44	3.32	3.12	0.868	0.885	0.760	88.17
+ BWE	3.07	3.65	2.86	0.86	16.26	3.07	2.36	0.868	0.881	0.784	88.07

Table. Experimental results on the validation set.

> Experimental results

Non-int	trusive	Intrusive					Downstream- task-independent		Downstream- task-dependent		Subjective	Overall	
DNSMOS	NISQA	PESQ	ESTOI	SDR	MCD	LSD	POLQA	BERT	LPS	Spksim	WAcc	MOS	ranking score
2.95 (11)	3.35 (11)	2.66 (2)	0.86 (3)	13.54 (3)	3.14 (2)	2.70 (1)	3.45 (3)	0.85 (2)	0.83 (3)	0.81 (2)	73.10 (3)	3.40 (7)	5.07

Table. Experimental results on the blind test set.

Audio samples

Samples from the validation set:

File id 7037: a sample with noise and band-limitation distortion

(a) noisy

(b) enhanced

> Audio samples

Samples from the validation set:

File id 20322: a sample with noise and clipping distortion

(a) noisy

(b) enhanced

(c) clean

> Audio samples

Samples from the validation set:

File id 22999: a sample with severe noise

(a) noisy

(b) enhanced

(c) clean

> Audio samples

Samples from the blind test set:

(a) File id 229: noisy

(b) File id 229: enhanced

A Two-stage Universal Speech Enhancement System for URGENT 2024 Challenge

010

111

(c) File id 63: noisy

(d) File id 63: enhanced

Thanks for your attention!