DeComFL: Federated Learning with Dimension-Free Communication

Zhe Li ^{1,*} Bicheng Ying ^{2,*} Zidong Liu ³ Chaosheng Dong ⁴ Haibo Yang ¹

¹Rochester Institute of Technology ²Google Inc. ³ComboCurve Inc. ⁴Amazon.com Inc.

*Equal contribution.

December 15, 2024

FL@FM-NeurIPS'24

Motivation

The communication cost in federated learning becomes a bottleneck in the large language model era. In each round, the communication costs **scale linearly** with the model dimension.

Using FedAvg as an example

$$\begin{aligned} \mathbf{x}_{i,r}^{1} = & \mathbf{x}_{r}, & \forall i \in C_{r} & (\text{Pull Model}) \\ \mathbf{x}_{i,r}^{k+1} = & \mathbf{x}_{i,r}^{k} - \eta \nabla f_{i}(\mathbf{x}_{i,r}^{k}), & k = 1, 2, \cdots, K, & (\text{Local Update}) \\ \mathbf{x}_{r+1} = & \frac{1}{|C_{r}|} \sum_{i \in C_{r}} \mathbf{x}_{i,r}^{K}, & (\text{Aggregate Model}) \end{aligned}$$

We want to eliminate this linear scale relationship between the model dimension and the communication cost.

-		\sim				-	
1.1	e	ι.	o	n	n	F.	
							-

Preliminary of Zeroth-order Optimization

Zeroth-order (ZO) optimization is a **gradient-free** technique for solving optimization problems that uses function values instead of gradients.

$$\begin{array}{ll} x_{r+1} = x_r - \eta \cdot g \cdot z & \text{ZO-SGD} \\ \text{where} & g = \frac{1}{\mu} (f(x + \mu z) - f(x)) & \text{Gradient Scalar} \\ & z \sim \mathcal{N}(0, I_d) & \text{Gaussian Distribution} \end{array}$$

The model update term $-\eta \cdot g \cdot z$ can be constructed by two scalars:

- g is just a scalar
- z can be reproduced given a seed

Algorithm Design

The key design idea is transforming the algorithm into an update-based form without losing the global model synchronization.

Eliminating Dimension-Dependent Communication in the Uplink:

$$\mathbf{x}_{i,r}^{k+1} = \mathbf{x}_{i,r}^{k} - \eta \cdot g_{i,r}^{k} \cdot \mathbf{z}_{r}^{k}, \quad k = 1, 2, \cdots, K,$$
(Local Update)
$$\mathbf{x}_{r+1} = \mathbf{x}_{r} - \eta \sum_{k=0}^{K-1} \underbrace{\left(\frac{1}{|C_{r}|} \sum_{i \in C_{r}} g_{i,r}^{k}\right)}_{:=g_{r}^{k}} \cdot \mathbf{z}_{r}^{k}$$
(Aggregate Model Update)

Key points:

- \mathbf{z}_r^k instead of $\mathbf{z}_{i,r}^k$ because of a shared seed determined by the server.
- Server model update only requires several scalars $\{g_{i,r}^k\}$.

イロト イポト イヨト イヨト 二日

Algorithm Design (Cont'd)

Eliminating Dimension-Dependent Communication in the Downlink:

$$\mathbf{x}_{i,r}^{1} = \mathbf{x}_{i,r'}^{K} - \eta \sum_{j=r'}^{r-1} \sum_{k=1}^{K} g_{j}^{k} \cdot \mathbf{z}_{j}^{k}, \qquad (\text{Reconstruct Model}) \qquad (1)$$

where r' is the last participation round. Above is a valid model only if $\mathbf{x}_{i,r'}^{K}$ is the same as server model $\mathbf{x}_{r'}$, but at the end of the local update, the client model $\mathbf{x}_{i,r'}^{K}$ deviates from the server model.

One straightforward solution

- take a snapshot of the model at the beginning of the local update
- **revert** to the snapshot after completing the local update.

Workflow and Communication Pattern of DeComFL

FL@FM-NeurIPS'24

イロト イボト イヨト イヨト

э

Experimental Results

Table:	Test Accuracy an	d Communication	Costs on	Fine-Tuning	Tasks

Model	$Dataset \setminus Task$	MeZO	FedZO with $P = 5$	DeComFL with $P = 5$	DeComFL with $P = 10$
OPT-125M	SST-2	83.99%	84.11% (0.68 TB)	84.02% (0.18 MB)	85.08% (0.36 MB)
	CB	72.49%	73.97% (0.23 TB)	74.28% (0.06 MB)	75.00% (0.12 MB)
	WSC	55.18%	59.43% (0.68 TB)	59.13% (0.18 MB)	59.59% (0.36 MB)
	WIC	53.25%	53.31% (0.68 TB)	53.28% (0.18 MB)	53.38% (0.36 MB)
	RTE	52.91%	53.42% (0.45 TB)	54.33% (0.12 MB)	57.05% (0.24 MB)
	BoolQ	61.46%	61.20% (0.45 TB)	61.36% (0.12 MB)	61.60% (0.24 MB)
OPT-1.3B	SST-2	90.23%	90.17% (4.73 TB)	90.02% (0.12 MB)	90.78% (0.24 MB)
	CB	74.01%	74.41% (7.09 TB)	74.40% (0.18 MB)	75.71% (0.36 MB)
	WSC	58.21%	59.95% (7.09 TB)	60.41% (0.18 MB)	64.16% (0.36 MB)
	WIC	55.95%	56.06% (4.73 TB)	55.97% (0.12 MB)	56.14% (0.24 MB)
	RTE	57.57%	58.88% (3.55 TB)	59.42% (0.90 MB)	60.89% (1.80 MB)
	BoolQ	61.98%	62.01% (3.55 TB)	62.17% (0.90 MB)	62.50% (1.80 MB)

The value enclosed in parentheses represents the total bytes of the vector transferred between the server and a client throughout the entire fine-tuning phase.

DeComFL

FL@FM-NeurIPS'24

December 15, 2024

A D N A B N A B N A B N

Thank you! Q&A

DeComFL

FL@FM-NeurIPS'24

December 15, 2024 8 / 8

э

・ロト ・四ト ・ヨト ・ヨト