

Junichiro Takahashi, JingChuan Guan, Masataka Sato, Kaito Baba, Kazuto Haruguchi, Daichi Nagashima, Satoshi Kodera, Norihiko Takeda

Summary: • Matching similar performance on medical reports compared to before With more labels
Apply to non-English (Japanese)
Contrastive learning on Electrocardiogram is effective even with model dependent on past inputs

Electrocardiogram (ECG):

- Reports to detect heart disease ۲
- Easy to obtain -> widely used

Result depend on expertise level

Previous research:

- 1. Al application on ECG overly simplified labels
- 2. The models did not depend on past inputs like BERT
- 3. Only English

Motivation:

Develop AI system to assist in the interpretation of ECG Bridge the gap in expertise

NEURAL INFORMATION PROCESSING SYSTEMS

Method:

ECG auto-interpretation Datasets

- Timeseries data from 12 ECG leads(a 10-second interval with a sampling rate of 500 Hz) (5,000 matrix).
- 38,245 ECG data in the UTokyo Hospital for train.
- Clinical data, not research data
- No patient overlap

Contrastive Learning for ECG

- Extract ECG features by evaluating the similarity between medical representations and ECG waveforms.
- Autoregressive language model with medical knowledge
- ResNet1d18 as an ECG encoder.
- Learning rate: 1e-3, Weight decay: 1e-3, Global batch size: 32, Epoch: 200

Result:

Results with the top 5 scores (excluding results with fewer than 10 labels)

Results with the top 5 scores

Labels	Top-1 Accuracy	Top-5 Accuracy
Pacemaker Rhythm	89.41%	93.73%
Left Anterior Fascicular Block	88.00%	88.00%
Normal	78.40%	90.45%
Ventricular Couplet	77.78%	77.78%
Ventricular Bigeminy	76.92%	84.62%

ECG autointerpretation Datasets

- ECG reports interpreted by Fukuda Denshi.
- About 100 labels selected by two cardiologists out of 157 ECG's labels.

ECG reports

This ECG shows {reports}. e.g.

This ECG shows Left Anterior Fascicular Block.

Contrastive learning by using MedLlama3-JP-v2text and ResNet1d18

Discussion:

- Scores below criteria for productization
 - Score on echocardiography is especially lower
 - $\circ\,$ High score on Normal ECG classification but classification for Normal ECG is difficult for non experts
- Human doctors perform multimodal processing AI should follow this trend too.

Future Application

 Multimodal medical models due to our results of autoregressive language model widely used in recent large multimodal model

Examples of diagnosis predictions ordered by logits

label: Short Run of Supraventricular Premature Contractions

predict: This ECG shows Ventricular Premature Contractions Couplets. predict: This ECG shows Frequent Supraventricular Premature Contractions. predict: This ECG shows Supraventricular Bigeminy. predict: This ECG shows Supraventricular Premature Contractions. predict: This ECG shows Short Run of Supraventricular Premature Contractions.

label: Suspected Inferior Wall Infarction

predict: This ECG shows Suspected Inferior Wall Infarction. predict: This ECG shows Suspected Anterior Wall Infarction. predict: This ECG shows Suspected Lateral Wall Infarction. predict: This ECG shows Suspected High Posterior Wall Infarction. predict: This ECG shows Suspected Acute Inferior Wall Infarction.

- High scores about Pacemaker Rhythm, Left Anterior Fascicular Block, Normal, Ventricular Couplet and Ventricular Bigeminy
- Competitive with previous research for ECG
- Semantic understanding of medical reports from top1-5 output

- Build multimodal medical models making diagnoses as doctors do
- Contribute to the development of ECG models for wearable devices

