

Med-FastSAM: Improving Transfer Efficiency of SAM to Domain-Generalised Medical Image Segmentation

Yuxiang Luo Qing Xu Jinglei Feng Guangwu Qian Wenting Duan

01 Introduction

Why Segmentation matters: diagnosing diseases, planning treatments, even guiding surgeries.

Challenge: Varity of data between hospitals, equipment, and even patient groups

Goal: Making models that can adapt well to different types of medical data without needing extensive fine-tuning.

Train domain Test domain

Natural images: relatively low variability

Train domain

Test domain

Medical images: high variability

02 | Why Domain Generalization Matters in Medical Imaging

Diverse Data Sources: Medical images vary widely due to differences in hospitals, equipment, and imaging techniques.

Limited Data Availability: Medical datasets are often small and require expert labeling, making data collection costly and time-consuming Need for Adaptability: Models must perform well on new data without frequent retraining, enabling faster deployment in clinical settings.

03 Challenges with SAM and Related Models in Medical Imaging

SAM:

+ High accuracy in natural image segmentation; + Adaptable across diverse image types.

- High Computational Cost
- Manual Prompts
- Loss of Details

MedSAM, SAMed, Med-SA: Models developed to adapt SAM for medical images.

- + Improved Efficiency for medical images
- Still limited by model size and specific needs of manual prompts

Segmentation Example in Natural Images

Kirillov, Alexander, et al. "Segment anything." *Proceedings of the IEEE/CVF International Conference on Computer Vision.* 2023.

04 Med-FastSAM

To overcome these challenges, we introduce Med-FastSAM, a model designed specifically to adapt SAM for medical image segmentation. Med-FastSAM has three core components that address the limitations of SAM

Lightweight Knowledge Aggregation Encoder

LKA-Encoder

LKA-Encoder reduces computational costs by distilling essential knowledge from SAM and combining it with medical-specific features. This encoder not only makes the model lighter but also enhances its adaptability to medical images.

CP-Encoder

CP-Encoder is introduced to eliminate the need for manual annotations. Instead of relying on expert-drawn points or boxes, it generates coarse masks automatically, making segmentation more efficient and accessible in clinical applications.

MSF-Decoder

Unlike SAM, which uses large patches and may overlook fine details, our MSF-Decoder integrates information at multiple scales to capture critical boundaries and details in medical images.

Med-FastSAM: Performance

Table 1: Comparison with state-of-the-arts on two source domains.								
Methods	Manual	Tuned/	ISIC-2018		MoNuSeg-2018			
	Prompt	Total (M)	mIoU(%)	Dice(%)	mIoU(%)	Dice(%)		
U-Net [24]	×	13.40/13.40	74.66	83.26	60.12	74.53		
ACC-UNet [10]		16.68/16.68	75.89	84.72	64.06	77.76		
nnU-Net [11]		30.60/30.60	78.21	86.43	67.52	80.52		
SAM [13]	Point	4.06/93.74	76.41	85.34	66.66	79.93		
SAMMI [9]		4.06/93.74	78.35	86.47	67.23	80.32		
MedSAM [20]		4.06/93.74	76.93	85.61	62.23	76.32		
Med-SA [28]		7.10/100.84	79.02	86.97	68.53	81.26		
SAMed [33]		4.21/93.88	78.98	86.93	68.00	80.88		
MobileSAM [32]		10.13/10.13	78.46	86.65	66.28	79.64		
EfficientSAM [30]		25.38/25.38	76.87	85.53	67.80	80.72		
RepViT-SAM [27]		9.98/9.98	77.01	85.72	64.40	78.29		
Med-FastSAM	×	8.62/14.48	80.38	87.84	69.35	81.75		

Table 2: Comparison with state-of-the-arts on two target domains.						
Methods	Manual	$ISIC-2018 \Rightarrow PH2$		MoNuSeg-2	$018 \Rightarrow \text{TNBC}$	
	Prompt	mIoU(%)	Dice(%)	mIoU(%)	Dice(%)	
U-Net 24		77.56	86.70	36.19	50.02	
ACC-UNet 10	×	78.12	86.99	39.34	52.43	
nnU-Net [11]		79.51	88.03	41.72	53.81	
SAM 13		81.65	89.16	45.34	59.76	
SAMMI [9]	Point	81.93	89.29	46.16	60.84	
MedSAM [20]		81.27	88.94	43.55	56.98	
Med-SA [28]		82.71	90.32	46.65	60.92	
SAMed [33]		82.54	90.10	46.28	60.73	
MobileSAM [32]		81.36	89.01	45.17	59.53	
EfficientSAM [30]		80.29	88.59	45.91	60.25	
RepViT-SAM [27]		81.15	88.87	44.93	59.31	
Med-FastSAM	×	83.48	90.62	47.89	62.26	

We evaluated Med-FastSAM on benchmark datasets like ISIC-2018 for skin lesion segmentation and MoNuSeg for nuclei segmentation. Results show that Med-FastSAM outperforms other models without any manual prompts

LKA-E	Incoder	CP-Encoder	MSE-Decoder	mIoU(%)	Dice(%)	Param(M)	FDS	
HEH	GA	CI -Encoder	MSI - Decoder				115	
				48.36	64.92	93.74	4.53	
\checkmark				52.06	67.94	11.32	26.68	
\checkmark	\checkmark			68.36	80.82	14.46	24.19	
\checkmark	\checkmark	\checkmark		68.68	81.26	14.47	24.09	
∕	\checkmark	\checkmark	\checkmark	69.53	81.53	14.48	21.18	

Table 3: Ablation study of Med-FastSAM on the MoNuSeg dataset.

Additionally, Med-FastSAM is highly efficient, using only 15.45% of the parameters of the original SAM model, which makes it feasible in clinical settings with limited resources.

In summary, Med-FastSAM is not only accurate but also efficient and adaptable, making it practical for real-world medical imaging tasks."

We propose Med-FastSAM to enhance SAM' s transfer efficiency for domain-generalized medical image segmentation. It integrates three key modules: LKA-Encoder for improved feature representation and reduced computational costs; CP-Encoder for fully automated segmentation by eliminating manual annotations; and MSF-Decoder for capturing fine-grained details with multiscale features. Experiments show Med-FastSAM outperforms existing SAM models, demonstrating superior generalization on unseen domains. Future work will focus on optimizing Med-FastSAM for diverse medical imaging modalities.