WyckoffTransformer: Generation of Symmetric Crystals

<u>Nikita Kazeev</u>^a, A. Ustyuzhanin^{ba}, I. Romanov^c, R. Zhu^d, W. Nong^d, S. Yamazaki^d, K. Hippalgaonkar^d

^a Institute for Functional Intelligent Materials, National University of Singapore, 4 Science Drive 2, Singapore 117544

^b Constructor University, Campus Ring 1, Bremen 28759, Germany

^c Tsinghua University Haidian District, 100084, Beijing, Chin

^d School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798

mirror

TLDR

A generative model for materials: permutation-invariant autoregressive generative Transformer encoder with a symmetry-based representation

Representation

WyFormer samples coordinate-free Wyckoff representations conditioned on space group symmetry. Full structures can then be constructed with DiffCSP++ [1] or pyXtal [8] & MLIP.

Composition: Nd2Al16Cu8 Group: I 4/m m m (139) 8.9013, 8.9013, 5.1991, 90.0000, 90.0000, 90.0000 Wyckoff sites: 0.0000 [2a] Site [4/m2/m2/m]Nd @ 0.0000 0.0000 WP Al @ 0.5000 0.2788 0.0000]. WP [8j] Site [mm2.] Al @ 0.0000 WP 0.0000 [8i] Site [mm2.] 0.6511

Wyckoff Positions

For a given symmetry transformation some points are special: they remain invariant. For a given space group, a set of points invariant under given transformation is called a Wyckoff position

DiffCSP++

DiffCSP

FlowMM -

p-1

2b is invariant only under identity transformation. The two o's are just examples, almost whole plane is 2b

1a is invariant under mirror transformation. The two x are just examples, the whole line is 1a

Nature is Symmetric

Cu @ [0.2500 0.2500 0.2500], WP [8f] Site [..2/m]

Model & Training

Step 1: Tokenize

139	Nd	Al	Al]	Cu	STOP
	4/m2/ m2/m	mm2.	mm2.		2/m	STOP
	0	0	1		0	STOP

Distribution of space groups in MP-20 dataset and the generated samples. 98% of MP-20 [6] structures belong to symmetry groups other than P1, which consists of only lattice transition. For symmetry-unaware models, DiffCSP & FlowMM, just 63% and 56% do \rightarrow their structures are unrealistic!

Generation Evaluation

Step 2: Sample known sequence length = 3 & cascade length = 1 Remove the unknown tokens, MASK the unknown parts of tokens

139		Nd	Al	Al
	4/m2/ m2/m Ø	4/m2/ m2/m	mm2.	MASK
		0	MASK	

Step 3: Embed & concatenate

Step 4: Transformer encoder

Method	Novel Unique	P1 (%)	Space Group		DFT	\uparrow	$\mid r$	СНО	iNet ↑
MP-20	Templates (#) \uparrow		$\chi^2\downarrow$	#	S.U.N. (%)	S.S.U.N. (%)		S.U.N. (%)	S.S.U.N. (%)
WyFormer	180	3.24	0.223	96	7.5	7.5	0.33	39.2	38.2
WyFormerDiffCSP++	186	1.46	0.212	95	14.1	14.1	0.44	36.7	36.0
DiffCSP++ [1]	10	2.57	0.255	94	8.5	8.5	0.32	41.4	40.8
CrystalFormer [2]	74	0.91	0.276	-	_	-	-	33.9	33.8
WyCryst [3]	165	4.79	0.710	-	-	-	-	36.6	35.2
DiffCSP [4]	76	36.57	7.989	82	20.8	13.1	0.36	57.4	40.6
FlowMM [5]	51	44.27	12.423	-	_	—	-	49.2	29.9
WyFormer MPTS-52	386	0	0.225	-	_	_	-	24.4	24.4

S.U.N. = Stable Unique Novel; S.S.U.N. = Symmetric Stable Unique Novel

Property Prediction

Advertisements

Method Energy, meV Band gap, meV Train Test

Come to Singapore! It is the most expen-

CGCNN	31	292					
SchNet	33	345					
MEGNet	30	307	Matariala Dra	iaat-2019 6 1			
GATGNN	33	280	Materials Project-2018.6				
ALIGNN	22	218					
Matform	er 21	211					
PotNet	19	204					
CHGNet	34	_	MPTrj	MP-20			
WyForme	rmer 25 234		MP-20				
AFLOW							
Method	Thermal conductivity	Debye temperature	Bulk modulus	Shear modulus			
Roost	2.70	37.17	8.82	9.98			
CrabNet	2.32	33.46	8.69	9.08			
HotCrab	2.25	35.76	9.10	9.43			
ElemNet	3.32	45.72	12.12	13.32			
RF	2.66	36.48	11.91	10.09			
	2 20	26.26	0.63	10 1/			

References

[1] Jiao, Rui, et al. "Space Group Constrained Crystal Generation." The Twelfth International Conference on Learning Representations
[2] Cao, Zhendong, et al. "Space Group Informed Transformer for Crystalline Materials Generation." arXiv preprint arXiv:2403.15734 (2024).
[3] Zhu, Ruiming, et al. "WyCryst: Wyckoff inorganic crystal generator framework." Available at SSRN 4658842 (2023).

[4] Jiao, Rui, et al. "Crystal structure prediction by joint equivariant diffusion." NeurIPS 2024

[5] Miller, Benjamin Kurt, et al. "FlowMM: Generating Materials with Riemannian Flow Matching." ICML 2024

[6] Xie, Tian, et al. "Crystal Diffusion Variational Autoencoder for Periodic Material Generation." ICLR 2022

[7] Curtarolo, Stefano, et al. "AFLOW: An automatic framework for highthroughput materials discovery." Computational Materials Science 58 (2012): 218-226.

[8] Fredericks, Scott, et al. "PyXtal: A Python library for crystal structure generation and symmetry analysis." Computer Physics Communications 261 (2021): 107810.

Conclusion

WyFormer has a unique and powerful synergy of attributes, proven by extensive experimentation: best-in-class symmetry-conditioned generation, physics-motivated inductive bias, competitive stability of the generated structures, competitive property prediction quality, and unparalleled inference speed. Altogether, they make it a great starting point in the material design pipeline. sive city in the world – because it is worth it!

Attend AI4X (not *that* \times) conference 8 to 11 July 2025. Covers AI for most natural sciences and, eclectically, finance. Abstract submission deadline \approx February 1.

Attend the ICLR 2025 workshop on multi scale ML on April 27/28 2025. Given lowlevel theory and code, how can we model complex systems on a useful time scale?

Apply for postdoc & PhD student positions at the multi scale ML project at the National University of Singapore

