
The Unreasonable Effectiveness 
of LLMs for Query Optimization

Peter Akioyamen, Zixuan Yi, Ryan Marcus
Database Group at The University of Pennsylvania

ML for Systems Workshop at NeurIPS 2024



2

Background: What is a query optimizer?



3

Background: What is a query optimizer?

Q
Query 
submitted

Optimizer Execution 
Engine

DBMS

Query 
result



4

Background: What is a query optimizer?

Q
Query 
submitted

Optimizer Execution 
Engine

DBMS

Query 
result

SELECT t.title AS movie, 
 cn.country_code AS country 
FROM company_name AS cn, 
 movie_companies AS mc, 
 title AS t 
WHERE t.production_year > 2005 
 AND t.id = mc.movie_id 
 AND cn.id = mc.company_id;

R



5

Background: What is a query optimizer?

Q
Query 
submitted

Optimizer Execution 
Engine

DBMS

Query 
result

SELECT t.title AS movie, 
 cn.country_code AS country 
FROM company_name AS cn, 
 movie_companies AS mc, 
 title AS t 
WHERE t.production_year > 2005 
 AND t.id = mc.movie_id 
 AND cn.id = mc.company_id;

R



6

Background: What is a query optimizer?

Q
Query 
submitted

Optimizer Execution 
Engine

DBMS

Query 
result

SELECT t.title AS movie, 
 cn.country_code AS country 
FROM company_name AS cn, 
 movie_companies AS mc, 
 title AS t 
WHERE t.production_year > 2005 
 AND t.id = mc.movie_id 
 AND cn.id = mc.company_id;

R



8

Background: Why is query optimization difficult?



9

Background: Why is query optimization difficult?

There are many ways we can execute a query – “Find all flights by Air Canada that 
originate in Vancouver, CA with a destination of Tokyo, JP”

FLIGHT AIRPORT PLANE

ap_id city cntry p_id airline modelf_id orig dest plane

AIRLINE

ar_id name
YVR Van CAN 1 AC B7471 LGA YYZ 32 AC Air C
HND Tok JAP 2 UA A3502 YVR HND 1 AA Amer

… … … … … …… … … … … …



10

Background: Why is query optimization difficult?

There are many ways we can execute a query – “Find all flights by Air Canada that 
originate in Vancouver, CA with a destination of Tokyo, JP”

⨝

⨝

⨝

⨝

FLIGHT AIRPORT

FLIGHT AIRPORT PLANE

ap_id city cntry p_id airline modelf_id orig dest plane

AIRLINE

ar_id name

AIRPORT

PLANE

AIRLINE

YVR Van CAN 1 AC B7471 LGA YYZ 32 AC Air C
HND Tok JAP 2 UA A3502 YVR HND 1 AA Amer

… … … … … …… … … … … …



11

Background: Why is query optimization difficult?

There are many ways we can execute a query – “Find all flights by Air Canada that 
originate in Vancouver, CA with a destination of Tokyo, JP”

⨝

⨝

⨝

⨝

FLIGHT AIRPORT

FLIGHT AIRPORT PLANE

ap_id city cntry p_id airline modelf_id orig dest plane

AIRLINE

ar_id name

AIRPORT

PLANE

AIRLINE

⨝

⨝

⨝

⨝

AIRLINE PLANE

FLIGHT

AIRPORT

AIRPORT

YVR Van CAN 1 AC B7471 LGA YYZ 32 AC Air C
HND Tok JAP 2 UA A3502 YVR HND 1 AA Amer

… … … … … …… … … … … …



12

Background: Why is query optimization difficult?

There are many ways we can execute a query – “Find all flights by Air Canada that 
originate in Vancouver, CA with a destination of Tokyo, JP”

⨝

⨝

⨝

⨝

FLIGHT AIRPORT

FLIGHT AIRPORT PLANE

ap_id city cntry p_id airline modelf_id orig dest plane

AIRLINE

ar_id name

AIRPORT

PLANE

AIRLINE

FLIGHT

∩

⨝

AIRPORT

PLANE

AIRLINE⨝

⨝

FLIGHT

⨝

AIRPORT

PLANE

AIRLINE⨝

⨝

⨝

⨝

⨝

⨝

AIRLINE PLANE

FLIGHT

AIRPORT

AIRPORT

YVR Van CAN 1 AC B7471 LGA YYZ 32 AC Air C
HND Tok JAP 2 UA A3502 YVR HND 1 AA Amer

… … … … … …… … … … … …



13

Background: Why is query optimization difficult?

Additionally, the query optimizer must still choose the physical operators for each join, 
that is, how to perform each join – hash join, nested for loop, sort then merge

⨝

⨝

⨝

⨝

FLIGHT AIRPORT

FLIGHT AIRPORT PLANE

ap_id city cntry p_id airline modelf_id orig dest plane

AIRLINE

ar_id name

AIRPORT

PLANE

AIRLINE

FLIGHT

∩

⨝

AIRPORT

PLANE

AIRLINE⨝

⨝

FLIGHT

⨝

AIRPORT

PLANE

AIRLINE⨝

⨝

⨝

⨝

⨝

⨝

AIRLINE PLANE

FLIGHT

AIRPORT

AIRPORT

YVR Van CAN 1 AC B7471 LGA YYZ 32 AC Air C
HND Tok JAP 2 UA A3502 YVR HND 1 AA Amer

… … … … … …… … … … … …



14

Background: Why is query optimization difficult?

• The number of possible query plans 
follows Catalan numbers

• At 𝑛 = 19 there are more than 2!" query 
plans 
• Traditional QOs use complex heuristics to 

eliminate very bad plans

• But often select suboptimal plans, leaving 
performance on the table

Note: Figures from Machine Learning for Query Optimization by Ryan Marcus (https://rm.cab/brown22)



15

Background: SQL hints can be used to improve performance 



16

Background: SQL hints can be used to improve performance 

• Hints are optional clauses that can be inserted into a query to guide 
the optimizer into generating plans with specific characteristics 



17

Background: SQL hints can be used to improve performance 

• Hints are optional clauses that can be inserted into a query to guide 
the optimizer into generating plans with specific characteristics 

• SQL hints provide a coarse-grained way to influence a query’s 
execution plan, often chosen based on a priori knowledge of the data



18

Background: SQL hints can be used to improve performance 

• Selecting hints can be extremely complicated for users, and providing the 
optimizer with incorrect hints can severely degrade query latency

• Different hints improve performance of some queries and degrade 
performance of others – this difference is often asymmetric



19

Background: SQL hints can be used to improve performance 

“Find all flights by Air Canada that originate in Vancouver, CA with a destination of Tokyo, JP”
FLIGHT AIRPORT PLANE

ap_id city cntry p_id airline modelf_id orig dest plane

AIRLINE

ar_id name
YVR Van CAN 1 AC B7471 LGA YYZ 32 AC Air C
HND Tok JAP 2 UA A3502 YVR HND 1 AA Amer

… … … … … …… … … … … …



20

Background: SQL hints can be used to improve performance 

SELECT *
FROM flight AS fl, 
 plane AS pl, airline AS al
 airport AS ap_1, airport AS ap_2, 
WHERE al.name = “Air Canada”
 AND ap_1.city = “Vancouver”
 AND ap_1.cntry = “CAN”
 AND ap_2.city = “Tokyo”
 AND ap_2.cntry = “JAP”
 AND pl.airline = al.ar_id
 AND fl.orig = ap_1.ap_id
 AND fl.dest = ap_2.ap_id
 AND fl.plane = pl.p_id;

“Find all flights by Air Canada that originate in Vancouver, CA with a destination of Tokyo, JP”
FLIGHT AIRPORT PLANE

ap_id city cntry p_id airline modelf_id orig dest plane

AIRLINE

ar_id name
YVR Van CAN 1 AC B7471 LGA YYZ 32 AC Air C
HND Tok JAP 2 UA A3502 YVR HND 1 AA Amer

… … … … … …… … … … … …



21

Background: SQL hints can be used to improve performance 

SELECT *
FROM flight AS fl, 
 plane AS pl, airline AS al
 airport AS ap_1, airport AS ap_2, 
WHERE al.name = “Air Canada”
 AND ap_1.city = “Vancouver”
 AND ap_1.cntry = “CAN”
 AND ap_2.city = “Tokyo”
 AND ap_2.cntry = “JAP”
 AND pl.airline = al.ar_id
 AND fl.orig = ap_1.ap_id
 AND fl.dest = ap_2.ap_id
 AND fl.plane = pl.p_id;

“Find all flights by Air Canada that originate in Vancouver, CA with a destination of Tokyo, JP”
FLIGHT AIRPORT PLANE

ap_id city cntry p_id airline modelf_id orig dest plane

AIRLINE

ar_id name
YVR Van CAN 1 AC B7471 LGA YYZ 32 AC Air C
HND Tok JAP 2 UA A3502 YVR HND 1 AA Amer

… … … … … …… … … … … …

⨝

⨝

⨝

⨝

FLIGHT AIRPORT

AIRPORT

PLANE

AIRLINE



22

Background: SQL hints can be used to improve performance 

“Find all flights by Air Canada that originate in Vancouver, CA with a destination of Tokyo, JP”
FLIGHT AIRPORT PLANE

ap_id city cntry p_id airline modelf_id orig dest plane

AIRLINE

ar_id name
YVR Van CAN 1 AC B7471 LGA YYZ 32 AC Air C
HND Tok JAP 2 UA A3502 YVR HND 1 AA Amer

… … … … … …… … … … … …

/*+ Parallel(ap_1, 3, hard) Parallel(ap_2, 3, hard) */
SELECT *
FROM flight AS fl, 
 plane AS pl, airline AS al
 airport AS ap_1, airport AS ap_2, 
WHERE al.name = “Air Canada”
 AND ap_1.city = “Vancouver”
 AND ap_1.cntry = “CAN”
 AND ap_2.city = “Tokyo”
 AND ap_2.cntry = “JAP”
 AND pl.airline = al.ar_id
 AND fl.orig = ap_1.ap_id
 AND fl.dest = ap_2.ap_id
 AND fl.plane = pl.p_id;

⨝

⨝

∩

⨝

FLIGHT AIRPORT

PLANE

AIRLINE

⨝

FLIGHT AIRPORT



23

Motivation: Simplify query optimization through steering



24

Motivation: Simplify query optimization through steering

• Modern methods use supervised learning[1], RL[2], or hybrid approaches[3], but perform 
sophisticated feature engineering on internal database statistics

Current State-of-the-Art

[1] L. Woltmann, J. Thiessat, C. Hartmann, D. Habich, and W. Lehner. FASTgres: Making Learned Query Optimizer Hinting Effective. Proceedings of the VLDB Endowment, Aug. 2023. 
[2] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[3] C. Anneser, N. Tatbul, D. Cohen, Z. Xu, P. Pandian, N. Laptev, and R. Marcus. Autosteer: Learned query optimization for any sql database. Proceedings of the VLDB Endowment, Aug. 2023.
[4] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677, 2018.
[5] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.



25

Motivation: Simplify query optimization through steering

• Modern methods use supervised learning[1], RL[2], or hybrid approaches[3], but perform 
sophisticated feature engineering on internal database statistics

• Common wisdom within the database community is that complex features such as cardinality 
estimates[4] or operator models[5] are required for query optimization

Current State-of-the-Art

[1] L. Woltmann, J. Thiessat, C. Hartmann, D. Habich, and W. Lehner. FASTgres: Making Learned Query Optimizer Hinting Effective. Proceedings of the VLDB Endowment, Aug. 2023. 
[2] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[3] C. Anneser, N. Tatbul, D. Cohen, Z. Xu, P. Pandian, N. Laptev, and R. Marcus. Autosteer: Learned query optimization for any sql database. Proceedings of the VLDB Endowment, Aug. 2023.
[4] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677, 2018.
[5] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.



26

Motivation: Simplify query optimization through steering

• Modern methods use supervised learning[1], RL[2], or hybrid approaches[3], but perform 
sophisticated feature engineering on internal database statistics

• Common wisdom within the database community is that complex features such as cardinality 
estimates[4] or operator models[5] are required for query optimization

• Often there is a need to materialize at least some of the potential query plans before optimizing 
the decisions of the query optimizer

Current State-of-the-Art

[1] L. Woltmann, J. Thiessat, C. Hartmann, D. Habich, and W. Lehner. FASTgres: Making Learned Query Optimizer Hinting Effective. Proceedings of the VLDB Endowment, Aug. 2023. 
[2] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[3] C. Anneser, N. Tatbul, D. Cohen, Z. Xu, P. Pandian, N. Laptev, and R. Marcus. Autosteer: Learned query optimization for any sql database. Proceedings of the VLDB Endowment, Aug. 2023.
[4] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677, 2018.
[5] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.



27

Motivation: Simplify query optimization through steering

• Modern methods use supervised learning[1], RL[2], or hybrid approaches[3], but perform 
sophisticated feature engineering on internal database statistics

• Common wisdom within the database community is that complex features such as cardinality 
estimates[4] or operator models[5] are required for query optimization

• Often there is a need to materialize at least some of the potential query plans before optimizing 
the decisions of the query optimizer

• These requirements have hindered practical adoption, so how else can we reclaim the performance 
that traditional QOs leave on the table? 

Current State-of-the-Art

[1] L. Woltmann, J. Thiessat, C. Hartmann, D. Habich, and W. Lehner. FASTgres: Making Learned Query Optimizer Hinting Effective. Proceedings of the VLDB Endowment, Aug. 2023. 
[2] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[3] C. Anneser, N. Tatbul, D. Cohen, Z. Xu, P. Pandian, N. Laptev, and R. Marcus. Autosteer: Learned query optimization for any sql database. Proceedings of the VLDB Endowment, Aug. 2023.
[4] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677, 2018.
[5] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.



28

Motivation: Simplify query optimization through steering

• Modern methods use supervised learning[1], RL[2], or hybrid approaches[3], but perform 
sophisticated feature engineering on internal database statistics

• Common wisdom within the database community is that complex features such as cardinality 
estimates[4] or operator models[5] are required for query optimization

• Often there is a need to materialize at least some of the potential query plans before optimizing 
the decisions of the query optimizer

• These requirements have hindered practical adoption, so how else can we reclaim the performance 
that traditional QOs leave on the table? 

Current State-of-the-Art

[1] L. Woltmann, J. Thiessat, C. Hartmann, D. Habich, and W. Lehner. FASTgres: Making Learned Query Optimizer Hinting Effective. Proceedings of the VLDB Endowment, Aug. 2023. 
[2] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[3] C. Anneser, N. Tatbul, D. Cohen, Z. Xu, P. Pandian, N. Laptev, and R. Marcus. Autosteer: Learned query optimization for any sql database. Proceedings of the VLDB Endowment, Aug. 2023.
[4] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677, 2018.
[5] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

Simplify feature engineering and learn to steer the query optimizer using hints!



29

LLMSteer: A simpler approach to query optimization using 
large language models

* Results shown for SVM with RBF kernel only, which was the best performing model.
[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015
[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.
[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.



30

LLMSteer: A simpler approach to query optimization using 
large language models

Training Data

* Results shown for SVM with RBF kernel only, which was the best performing model.
[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015
[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.
[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.



31

LLMSteer: A simpler approach to query optimization using 
large language models

Training Data

1. ~3000 SQL queries from the join order[1] 
and cardinality estimation[2] benchmarks

2. Gathered 48 well-known PostgreSQL hints 
used in prior work[3-4]

3. Executed queries 5 times per hint – mean 
latency was used for analysis 

4. The hint with the best performance gains 
relative to the default PostgreSQL plan was 
selected a priori as the Alternative plan

* Results shown for SVM with RBF kernel only, which was the best performing model.
[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015
[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.
[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.



32

LLMSteer: A simpler approach to query optimization using 
large language models

Training Data Modelling

1. ~3000 SQL queries from the join order[1] 
and cardinality estimation[2] benchmarks

2. Gathered 48 well-known PostgreSQL hints 
used in prior work[3-4]

3. Executed queries 5 times per hint – mean 
latency was used for analysis 

4. The hint with the best performance gains 
relative to the default PostgreSQL plan was 
selected a priori as the Alternative plan

* Results shown for SVM with RBF kernel only, which was the best performing model.
[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015
[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.
[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.



33

LLMSteer: A simpler approach to query optimization using 
large language models

Training Data Modelling

1. ~3000 SQL queries from the join order[1] 
and cardinality estimation[2] benchmarks

2. Gathered 48 well-known PostgreSQL hints 
used in prior work[3-4]

3. Executed queries 5 times per hint – mean 
latency was used for analysis 

4. The hint with the best performance gains 
relative to the default PostgreSQL plan was 
selected a priori as the Alternative plan

* Results shown for SVM with RBF kernel only, which was the best performing model.
[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015
[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.
[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

1. Embed raw SQL queries using an LLM

2. Truncate embeddings using PCA (120 
dimensions captures ~90% of variance)

3. Trained binary classifiers to steer between 
the Default Plan and the Alternative Plan 
produced by the selected hint*



34

LLMSteer: A simpler approach to query optimization using 
large language models

Training Data Modelling

1. ~3000 SQL queries from the join order[1] 
and cardinality estimation[2] benchmarks

2. Gathered 48 well-known PostgreSQL hints 
used in prior work[3-4]

3. Executed queries 5 times per hint – mean 
latency was used for analysis 

4. The hint with the best performance gains 
relative to the default PostgreSQL plan was 
selected a priori as the Alternative plan

* Results shown for SVM with RBF kernel only, which was the best performing model.
[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015
[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.
[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

1. Embed raw SQL queries using an LLM

2. Truncate embeddings using PCA (120 
dimensions captures ~90% of variance)

3. Trained binary classifiers to steer between 
the Default Plan and the Alternative Plan 
produced by the selected hint*

LLMSteer



35

LLMSteer: A simpler approach to query optimization using 
large language models

Training Data Modelling Evaluation

1. ~3000 SQL queries from the join order[1] 
and cardinality estimation[2] benchmarks

2. Gathered 48 well-known PostgreSQL hints 
used in prior work[3-4]

3. Executed queries 5 times per hint – mean 
latency was used for analysis 

4. The hint with the best performance gains 
relative to the default PostgreSQL plan was 
selected a priori as the Alternative plan

* Results shown for SVM with RBF kernel only, which was the best performing model.
[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015
[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.
[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

1. Embed raw SQL queries using an LLM

2. Truncate embeddings using PCA (120 
dimensions captures ~90% of variance)

3. Trained binary classifiers to steer between 
the Default Plan and the Alternative Plan 
produced by the selected hint*

LLMSteer



36

LLMSteer: A simpler approach to query optimization using 
large language models

Training Data Modelling Evaluation

1. ~3000 SQL queries from the join order[1] 
and cardinality estimation[2] benchmarks

2. Gathered 48 well-known PostgreSQL hints 
used in prior work[3-4]

3. Executed queries 5 times per hint – mean 
latency was used for analysis 

4. The hint with the best performance gains 
relative to the default PostgreSQL plan was 
selected a priori as the Alternative plan

* Results shown for SVM with RBF kernel only, which was the best performing model.
[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015
[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.
[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
[4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

1. Embed raw SQL queries using an LLM

2. Truncate embeddings using PCA (120 
dimensions captures ~90% of variance)

3. Trained binary classifiers to steer between 
the Default and Alternative Plans produced 
by the selected hint*

1. Stratified cross-validation

2. Query Optimization Metrics:
I. Cumulative execution time of 

queries (total latency)
II. 90th percentile latency of queries 

(P90 latency)

3. Classification Metrics:
I. Recall
II. AUROC
III. Accuracy

LLMSteer



38

LLMSteer: A simpler approach to query optimization using 
large language models



39

LLMSteer: A simpler approach to query optimization using 
large language models

1

[−0.04813609,−0.43741802,… ,−0.28336727, 0.98100264]

d-dimensional query embedding 

LLM 
embedding



40

LLMSteer: A simpler approach to query optimization using 
large language models

[−0.04813609,−0.43741802,… ,−0.28336727, 0.98100264]

d-dimensional query embedding 

[0.74970049,−1.36168475,… , 0.78163968, 0.66720773]

120 principal components

1

2 Truncate 
embeddings

LLM 
embedding



41

LLMSteer: A simpler approach to query optimization using 
large language models

[−0.04813609,−0.43741802,… ,−0.28336727, 0.98100264]

d-dimensional query embedding 

[0.74970049,−1.36168475,… , 0.78163968, 0.66720773]

120 principal components

1

2 Truncate 
embeddings

3 Input to classifier

LLM 
embedding



42

LLMSteer: A simpler approach to query optimization using 
large language models

[−0.04813609,−0.43741802,… ,−0.28336727, 0.98100264]

d-dimensional query embedding 

[0.74970049,−1.36168475,… , 0.78163968, 0.66720773]

120 principal components
Alternative Plan

1

2 Truncate 
embeddings

Default Plan

4
LLM 
embedding

3 Input to classifier

Predict hint & 
select query plan



43

LLMSteer: A simpler approach to query optimization using 
large language models

[−0.04813609,−0.43741802,… ,−0.28336727, 0.98100264]

d-dimensional query embedding 

[0.74970049,−1.36168475,… , 0.78163968, 0.66720773]

120 principal components
Alternative Plan

1

2 Truncate 
embeddings

Default Plan

4

Correct Prediction
3 Input to classifier

LLM 
embedding

Predict hint & 
select query plan



44

Experiment 1: Comparative performance of LLMSteer



Empirical CDF of latency across cross-validation testing workloads
• Purple indicates selecting the default plan for all queries
• Orange indicates selecting the alternative plan for all queries

45

Experiment 1: Comparative performance of LLMSteer



46

Experiment 1: Comparative performance of LLMSteer

P90

P50

I) Gap to 100% workload
II) Gap to P90

• LLMSteer outperforms both the default and alternative plans at the higher end of the distribution, 
achieving a lower P90 (II) and saturating just as fast the Alternative plan (I)



• LLMSteer improves on the alternative plan, lowering the performance gap to the default plan, 
capturing more of the total latency earlier and improving the median latency

47

Experiment 1: Comparative performance of LLMSteer

P90

P50
III) Gap to P50

IV) Gap to 50% workload



48

Experiment 1: Comparative performance of LLMSteer

• LLMSteer falls short of the optimal steering strategy, but effectively combines the benefits of the 
default PostgreSQL plan and the alternative

P90

P50

IV) Gap to 50% workload

III) Gap to P50

II) Gap to P90
I) Gap to 100% workload



49

Experiment 1: Comparative performance of LLMSteer

• The system can be seen as trading a small increase in median latency for a large reduction in P90 and 
total latency, a trade-off that is worthwhile in most practical applications

P90

P50

IV) Gap to 50% workload

III) Gap to P50

II) Gap to P90
I) Gap to 100% workload



50

Cautious Optimism and Next Steps



51

Cautious Optimism and Next Steps

Challenges and Limitations
• Internet-scale language models

– Were LLMs trained on the JOB and CEB 
benchmark data?

– More broadly, how do we create 
benchmarks in this new LLM-era?



52

Cautious Optimism and Next Steps

Challenges and Limitations
• Internet-scale language models

– Were LLMs trained on the JOB and CEB 
benchmark data?

– More broadly, how do we create 
benchmarks in this new LLM-era?

• Integration of LLMs into query pathways
– No longer need to materialize query plans 

to perform optimization

– No longer require internal database 
statistics

– Must now integrate LLMs into query 
workflows and perform inference



• We did not expect this to work, but clearly 
LLMs can represent something meaningful 
about program semantics that is helpful for 
query optimization

53

Cautious Optimism and Next Steps

Challenges and Limitations Reasons for Optimism
• Internet-scale language models

– Were LLMs trained on the JOB and CEB 
benchmark data?

– More broadly, how do we create 
benchmarks in this new LLM-era?

• Integration of LLMs into query pathways
– No longer need to materialize query plans 

to perform optimization

– No longer require internal database 
statistics

– Must now integrate LLMs into query 
workflows and perform inference



• We did not expect this to work, but clearly 
LLMs can represent something meaningful 
about program semantics that is helpful for 
query optimization

• Quantization may play an essential role in 
improving latency and developing LLM-
powered QOs

54

Cautious Optimism and Next Steps

Challenges and Limitations Reasons for Optimism
• Internet-scale language models

– Were LLMs trained on the JOB and CEB 
benchmark data?

– More broadly, how do we create 
benchmarks in this new LLM-era?

• Integration of LLMs into query pathways
– No longer need to materialize query plans 

to perform optimization

– No longer require internal database 
statistics

– Must now integrate LLMs into query 
workflows and perform inference



55

Summary



56

Summary

• We introduce LLMSteer, a simpler approach to query optimization 
using LLMs rather than internal database statistics.



57

Summary

• We introduce LLMSteer, a simpler approach to query optimization 
using LLMs rather than internal database statistics.

• LLMSteer is effective on two query benchmarks – relative to the 
PostgreSQL default plan the system reduces total and P90 latency by 
72% and reduces median latency by 35% relative to the alternative.



58

Summary

• We introduce LLMSteer, a simpler approach to query optimization 
using LLMs rather than internal database statistics.

• LLMSteer is effective on two query benchmarks – relative to the 
PostgreSQL default plan the system reduces total and P90 latency by 
72% and reduces median latency by 35% relative to the alternative.

There are still far more open questions than answers!



Thank you! Questions?

Our group: https://db.cis.upenn.edu
Our code: https://github.com/peter-ai/LLMSteer
Reach me at: peterai@seas.upenn.edu

ArXiv Code Me



Appendix



61

Experiment 1I: Robustness to non-semantic syntactic 
changes in SQL query formatting



62

Experiment 1I: Robustness to non-semantic syntactic 
changes in SQL query formatting
• Syntax A is the original query formatting – single-line declarative statements with no newlines or indentation

“SELECT t.title AS movie, cn.country_code AS country FROM company_name AS cn, movie_companies AS mc, title AS t WHERE t.production_year > 2005 AND 
t.id = mc.movie_id AND cn.id = mc.company_id;”



63

Experiment 1I: Robustness to non-semantic syntactic 
changes in SQL query formatting
• Syntax A is the original query formatting – single-line declarative statements with no newlines or indentation

• Syntax B introduces newline characters and uses whitespace for indentation

“SELECT t.title AS movie, cn.country_code AS country FROM company_name AS cn, movie_companies AS mc, title AS t WHERE t.production_year > 2005 AND 
t.id = mc.movie_id AND cn.id = mc.company_id;”

“SELECT t.title AS movie, 
 cn.country_code AS country 
FROM company_name AS cn, 
 movie_companies AS mc, 
 title AS t 
WHERE t.production_year > 2005 
 AND t.id = mc.movie_id 
 AND cn.id = mc.company_id;”



64

Experiment 1I: Robustness to non-semantic syntactic 
changes in SQL query formatting
• Syntax A is the original query formatting – single-line declarative statements with no newlines or indentation

• Syntax B introduces newline characters and uses whitespace for indentation

• Syntax C introduces newline characters and uses tabs for indentation

“SELECT t.title AS movie, cn.country_code AS country FROM company_name AS cn, movie_companies AS mc, title AS t WHERE t.production_year > 2005 AND 
t.id = mc.movie_id AND cn.id = mc.company_id;”

“SELECT t.title AS movie, 
 cn.country_code AS country 
FROM company_name AS cn, 
 movie_companies AS mc, 
 title AS t 
WHERE t.production_year > 2005 
 AND t.id = mc.movie_id 
 AND cn.id = mc.company_id;”

“SELECT t.title AS movie, 
\tcn.country_code AS country 
FROM company_name AS cn, 
\tmovie_companies AS mc, 
\ttitle AS t 
WHERE t.production_year > 2005 
\tAND t.id = mc.movie_id 
\tAND cn.id = mc.company_id;“



65

Experiment 1I: Robustness to non-semantic syntactic 
changes in SQL query formatting

a) Trained on Syntax A

• Syntax A is the original query formatting – single-line declarative statements with no newlines or indentation

• Syntax B introduces newline characters and uses whitespace for indentation

• Syntax C introduces newline characters and uses tabs for indentation

The original SQL queries were single line statements – we evaluate LLMSteer on query 
formats that align more closely with how queries are written in production systems



66

Experiment 1I: Robustness to non-semantic syntactic 
changes in SQL query formatting

a) Trained on Syntax A b) Trained on Syntax B c) Trained on Syntax C

The original SQL queries were single line statements – we evaluate LLMSteer on query 
formats that align more closely with how queries are written in production systems

• Syntax A is the original query formatting – single-line declarative statements with no newlines or indentation

• Syntax B introduces newline characters and uses whitespace for indentation

• Syntax C introduces newline characters and uses tabs for indentation


