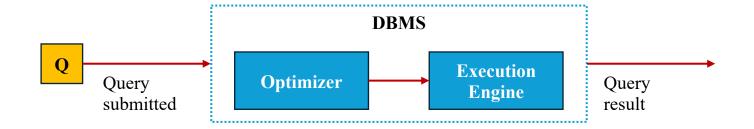
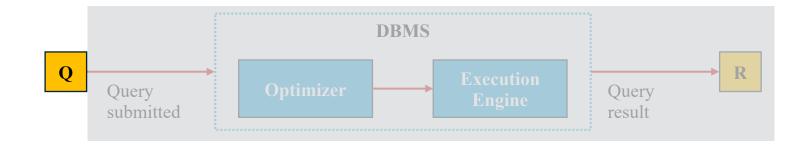
The Unreasonable Effectiveness of LLMs for Query Optimization

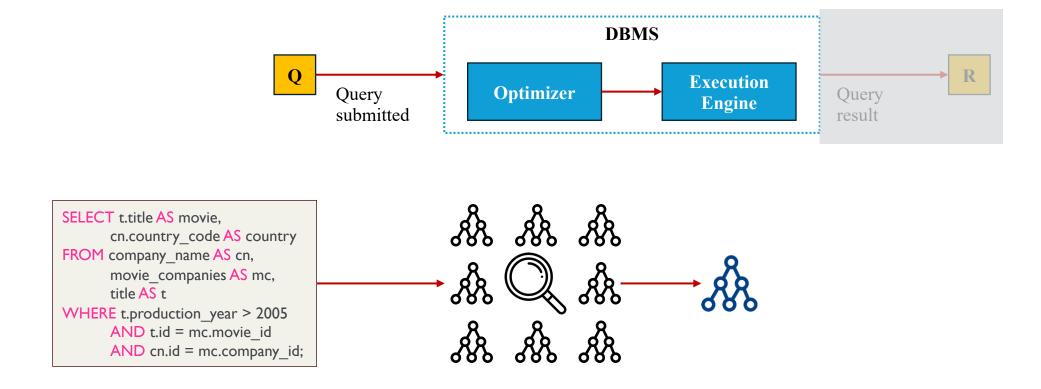
Peter Akioyamen, Zixuan Yi, Ryan Marcus Database Group at The University of Pennsylvania

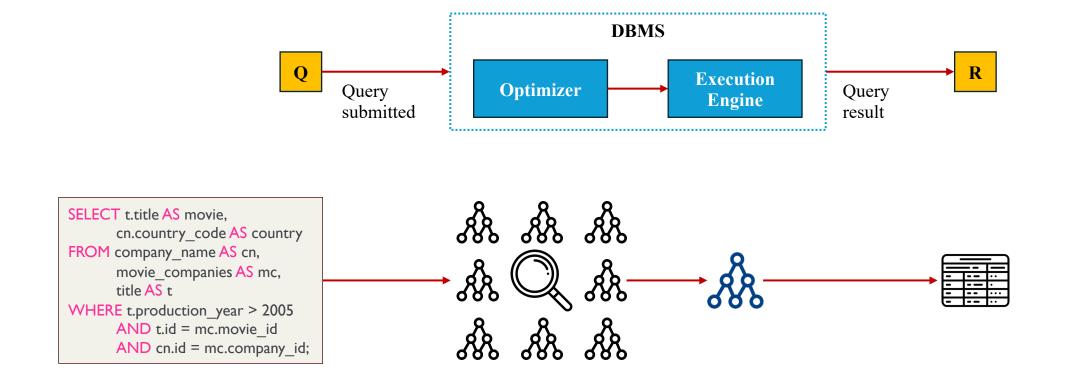
ML for Systems Workshop at NeurIPS 2024





SELECT t.title AS movie, cn.country_code AS country FROM company_name AS cn, movie_companies AS mc, title AS t WHERE t.production_year > 2005 AND t.id = mc.movie_id AND cn.id = mc.company_id;





FLIGHT			
f_id	orig	dest	plane
1	LGA	YYZ	32
2	YVR	HND	1
	•••	•••	•••

AIRPORT		
ap_id	city	cntry
YVR	Van	CAN
HND	Tok	JAP
•••	•••	• • •

	PLANE	
p_id	airline	model
1	AC	B747
2	UA	A350
	•••	• • •

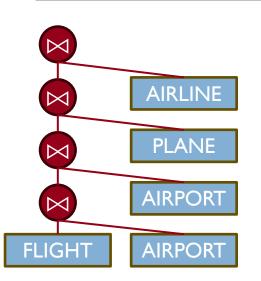
AIRLINE		
ar_id AC AA	name Air C Amer	
	•••	

FLIGHT			
f_id	orig	dest	plane
1	LGA	YYZ	32
2	YVR	HND	1
	•••	•••	•••

AIRPORT		
ap_id	city	cntry
YVR	Van	CAN
HND	Tok	JAP
	•••	•••

	PLANE	
p_id	airline	model
1	AC	B747
2	UA	A350
	•••	•••

AIRLINE		
ar_id	name	
AC	Air C	
AA	Amer	

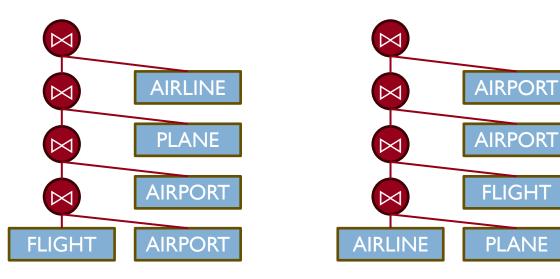


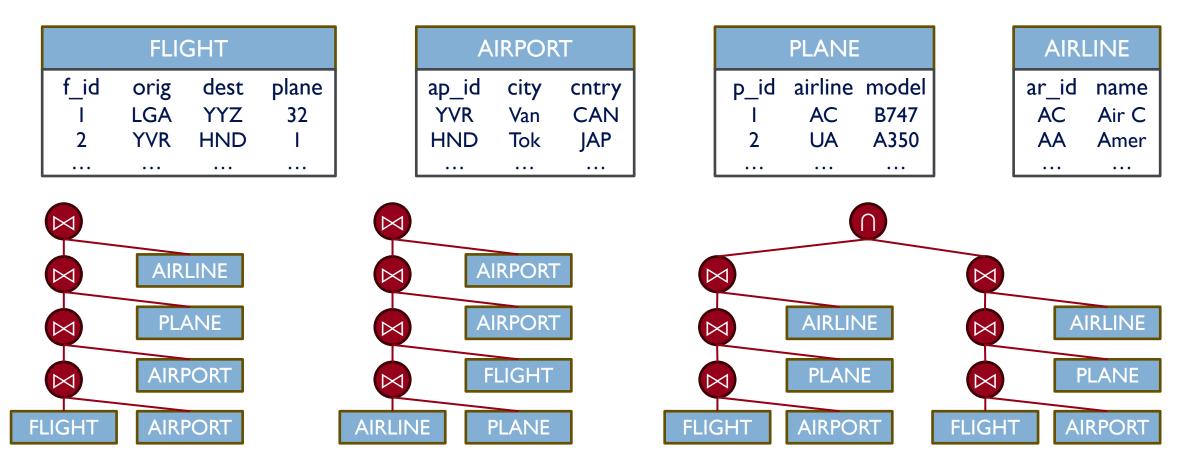
FLIGHT			
f_id	orig	dest	plane
I.	LGA	YYZ	32
2	YVR	HND	
•••	•••	•••	

A	AIRPORT		
ap_id	city	cntry	
YVR	Van	CAN	
HND	Tok	JAP	
	• • •	• • •	

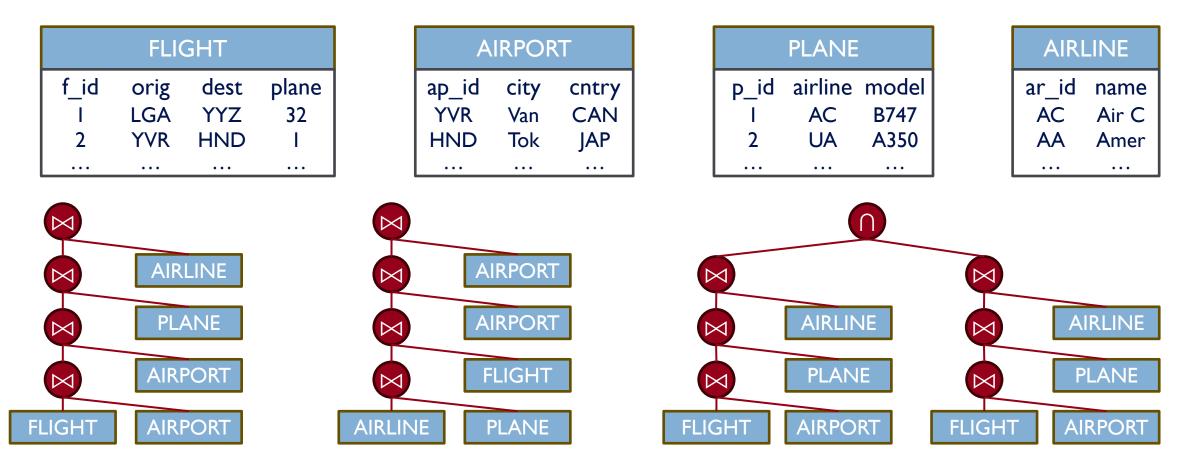
	PLANE	
p_id	airline	model
1	AC	B747
2	UA	A350
	•••	•••

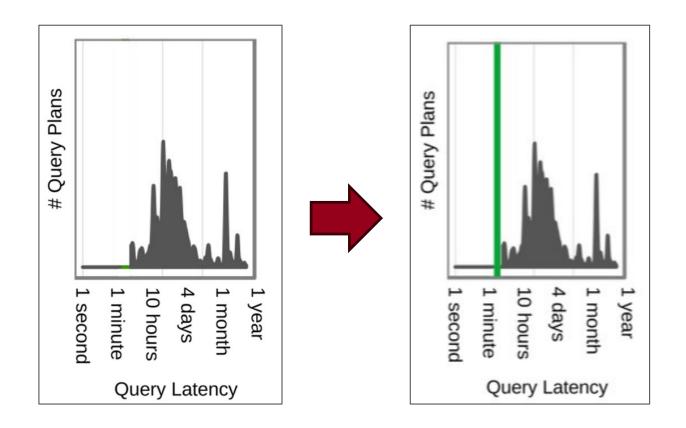
AIRLINE		
ar_id	name	
AC	Air C	
AA	Amer	
	•••	





Additionally, the query optimizer must still choose the physical operators for each join, that is, *how* to perform each join – hash join, nested for loop, sort then merge





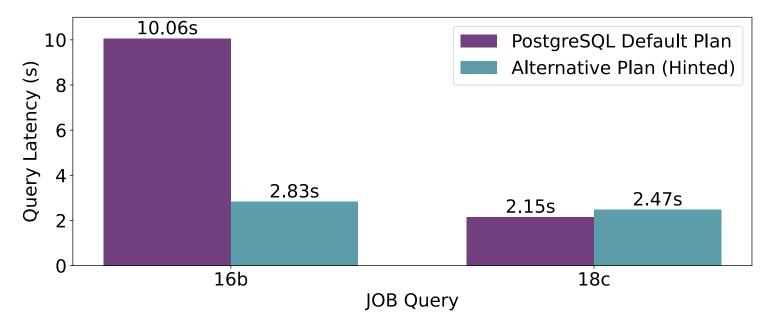
- The number of possible query plans follows Catalan numbers
- At n = 19 there are more than 2^{32} query plans
 - Traditional QOs use complex heuristics to eliminate very bad plans
 - But often select suboptimal plans, leaving performance on the table

Note: Figures from Machine Learning for Query Optimization by Ryan Marcus (https://rm.cab/brown22)

• Hints are optional clauses that can be inserted into a query to guide the optimizer into generating plans with specific characteristics

- Hints are optional clauses that can be inserted into a query to guide the optimizer into generating plans with specific characteristics

 SQL hints provide a coarse-grained way to influence a query's execution plan, often chosen based on *a priori* knowledge of the data



- Selecting hints can be extremely complicated for users, and providing the optimizer with incorrect hints can severely degrade query latency
- Different hints improve performance of some queries and degrade performance of others this difference is often asymmetric

FLIGHT			
f_id	orig	dest	plane
1	LGA	YYZ	32
2 YVR HND I			
	•••	•••	

AIRPORT		
ap_id	city	cntry
YVR	Van	CAN
HND	Tok	JAP
•••	•••	•••

	PLANE	
p_id	airline	model
I	AC	B747
2	UA	A350
	•••	•••

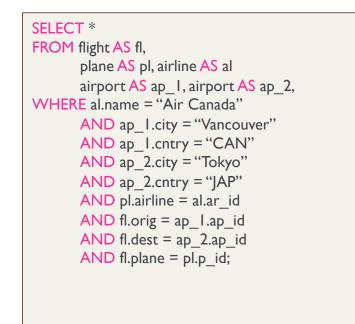
AIRLINE		
ar_id AC AA	name Air C Amer	

FLIGHT			
f_id	orig	dest	plane
I.	LGA	YYZ	32
2	YVR	HND	1
• • •	•••	• • •	•••

AIRPORT		
ap_id	city	cntry
YVR	Van	CAN
HND	Tok	JAP
•••	•••	•••

	PLANE	
p_id	airline	model
I.	AC	B747
2	UA	A350
•••	•••	

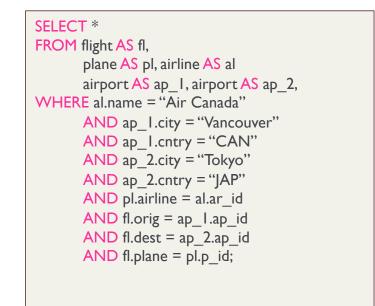
AIRLINE		
ar_id	name	
AC	Air C	
AA	Amer	
•••	• • •	

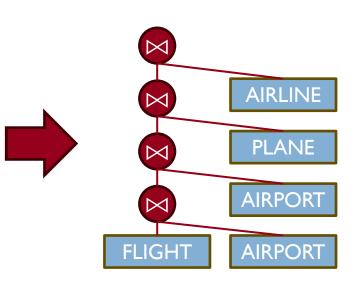


FLIGHT			
f_id	orig	dest	plane
1	LGA	YYZ	32
2	YVR	HND	1
•••	• • •	• • •	•••

	PLANE	
p_id	airline	model
	AC	B747
2	UA	A350
	•••	•••

AIRLINE		
ar_id	name	
AC	Air C	
AA	Amer	
•••	•••	





FLIGHT			
f_id	orig	dest	plane
1	LGA	YYZ	32
2	YVR	HND	1
•••	•••	• • •	•••

AIRPORT			
ap_id	city	cntry	
YVR	Van	CAN	
HND	Tok	JAP	
	•••	•••	

PLANE		
p_id	airline	model
1	AC	B747
2	UA	A350
	•••	•••

AIRLINE		
ar_id AC	name Air C	
AA	Amer	
	•••	



Current State-of-the-Art

• Modern methods use supervised learning^[1], RL^[2], or hybrid approaches^[3], but perform sophisticated feature engineering on internal database statistics

^[5] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

^[1] L. Woltmann, J. Thiessat, C. Hartmann, D. Habich, and W. Lehner. FASTgres: Making Learned Query Optimizer Hinting Effective. Proceedings of the VLDB Endowment, Aug. 2023.

^[2] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.

^[3] C. Anneser, N. Tatbul, D. Cohen, Z. Xu, P. Pandian, N. Laptev, and R. Marcus. Autosteer: Learned query optimization for any sql database. Proceedings of the VLDB Endowment, Aug. 2023.

^[4] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677, 2018.

Current State-of-the-Art

- Modern methods use supervised learning^[1], RL^[2], or hybrid approaches^[3], but perform sophisticated feature engineering on internal database statistics
- Common wisdom within the database community is that complex features such as cardinality estimates^[4] or operator models^[5] are required for query optimization

^[5] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

^[1] L. Woltmann, J. Thiessat, C. Hartmann, D. Habich, and W. Lehner. FASTgres: Making Learned Query Optimizer Hinting Effective. Proceedings of the VLDB Endowment, Aug. 2023.

^[2] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.

^[3] C. Anneser, N. Tatbul, D. Cohen, Z. Xu, P. Pandian, N. Laptev, and R. Marcus. Autosteer: Learned query optimization for any sql database. Proceedings of the VLDB Endowment, Aug. 2023.

^[4] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677, 2018.

Current State-of-the-Art

- Modern methods use supervised learning^[1], RL^[2], or hybrid approaches^[3], but perform sophisticated feature engineering on internal database statistics
- Common wisdom within the database community is that complex features such as cardinality estimates^[4] or operator models^[5] are required for query optimization
- Often there is a need to materialize at least some of the potential query plans before optimizing the decisions of the query optimizer

^[5] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

^[1] L. Woltmann, J. Thiessat, C. Hartmann, D. Habich, and W. Lehner. FASTgres: Making Learned Query Optimizer Hinting Effective. Proceedings of the VLDB Endowment, Aug. 2023.

^[2] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.

^[3] C. Anneser, N. Tatbul, D. Cohen, Z. Xu, P. Pandian, N. Laptev, and R. Marcus. Autosteer: Learned query optimization for any sql database. Proceedings of the VLDB Endowment, Aug. 2023.

^[4] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677, 2018.

Current State-of-the-Art

- Modern methods use supervised learning^[1], RL^[2], or hybrid approaches^[3], but perform sophisticated feature engineering on internal database statistics
- Common wisdom within the database community is that complex features such as cardinality estimates^[4] or operator models^[5] are required for query optimization
- Often there is a need to materialize at least some of the potential query plans before optimizing the decisions of the query optimizer
- These requirements have hindered practical adoption, so how else can we reclaim the performance that traditional QOs leave on the table?

^[5] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

^[1] L. Woltmann, J. Thiessat, C. Hartmann, D. Habich, and W. Lehner. FASTgres: Making Learned Query Optimizer Hinting Effective. Proceedings of the VLDB Endowment, Aug. 2023.

^[2] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.

^[3] C. Anneser, N. Tatbul, D. Cohen, Z. Xu, P. Pandian, N. Laptev, and R. Marcus. Autosteer: Learned query optimization for any sql database. Proceedings of the VLDB Endowment, Aug. 2023.

^[4] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677, 2018.

Current State-of-the-Art

- Modern methods use supervised learning^[1], RL^[2], or hybrid approaches^[3], but perform sophisticated feature engineering on internal database statistics
- Common wisdom within the database community is that complex features such as cardinality estimates^[4] or operator models^[5] are required for query optimization
- Often there is a need to materialize at least some of the potential query plans before optimizing the decisions of the query optimizer
- These requirements have hindered practical adoption, so how else can we reclaim the performance that traditional QOs leave on the table?

Simplify feature engineering and learn to steer the query optimizer using hints!

^[5] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

^[1] L. Woltmann, J. Thiessat, C. Hartmann, D. Habich, and W. Lehner. FASTgres: Making Learned Query Optimizer Hinting Effective. Proceedings of the VLDB Endowment, Aug. 2023.

^[2] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.

^[3] C. Anneser, N. Tatbul, D. Cohen, Z. Xu, P. Pandian, N. Laptev, and R. Marcus. Autosteer: Learned query optimization for any sql database. Proceedings of the VLDB Endowment, Aug. 2023.

^[4] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned cardinalities: Estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677, 2018.

st Results shown for SVM with RBF kernel only, which was the best performing model.

[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015

[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.

[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.

[4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

Training Data

* Results shown for SVM with RBF kernel only, which was the best performing model.

[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015

[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.

[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.

[4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

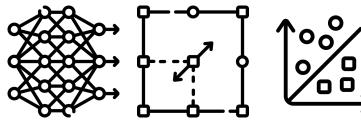
Training Data

- ~3000 SQL queries from the join order^[1] and cardinality estimation^[2] benchmarks
- 2. Gathered 48 well-known PostgreSQL hints used in prior work^[3-4]
- 3. Executed queries 5 times per hint mean latency was used for analysis
- 4. The hint with the best performance gains relative to the default PostgreSQL plan was selected *a priori* as the Alternative plan

* Results shown for SVM with RBF kernel only, which was the best performing model.

- [1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015
- [2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.
- [3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
 [4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

Training Data



Modelling

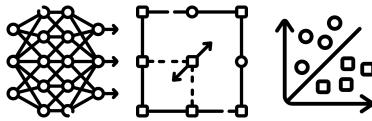
- ~3000 SQL queries from the join order^[1] and cardinality estimation^[2] benchmarks
- 2. Gathered 48 well-known PostgreSQL hints used in prior work^[3-4]
- 3. Executed queries 5 times per hint mean latency was used for analysis
- 4. The hint with the best performance gains relative to the default PostgreSQL plan was selected *a priori* as the Alternative plan

* Results shown for SVM with RBF kernel only, which was the best performing model.

- [1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015
- [2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.
- [3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
 [4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

Training Data

- ~3000 SQL queries from the join order^[1] and cardinality estimation^[2] benchmarks
- 2. Gathered 48 well-known PostgreSQL hints used in prior work^[3-4]
- 3. Executed queries 5 times per hint mean latency was used for analysis
- 4. The hint with the best performance gains relative to the default PostgreSQL plan was selected *a priori* as the Alternative plan



Modelling

- I. Embed raw SQL queries using an LLM
- Truncate embeddings using PCA (120 dimensions captures ~90% of variance)
- Trained binary classifiers to steer between the Default Plan and the Alternative Plan produced by the selected hint*

st Results shown for SVM with RBF kernel only, which was the best performing model.

^[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015

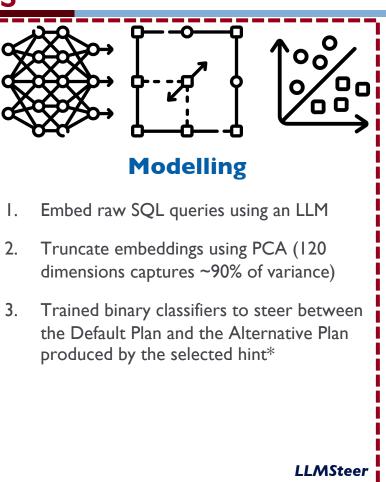
^[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.

 ^[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
 [4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

[🐯] Penn Engineering

Training Data

- ~3000 SQL queries from the join order^[1] and cardinality estimation^[2] benchmarks
- 2. Gathered 48 well-known PostgreSQL hints used in prior work^[3-4]
- 3. Executed queries 5 times per hint mean latency was used for analysis
- 4. The hint with the best performance gains relative to the default PostgreSQL plan was selected *a priori* as the Alternative plan



* Results shown for SVM with RBF kernel only, which was the best performing model.

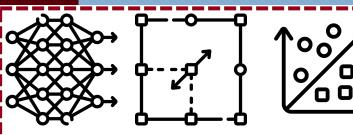
 ^[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
 [4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

^[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015

^[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.

Training Data

- ~3000 SQL queries from the join order^[1] and cardinality estimation^[2] benchmarks
- 2. Gathered 48 well-known PostgreSQL hints used in prior work^[3-4]
- 3. Executed queries 5 times per hint mean latency was used for analysis
- 4. The hint with the best performance gains relative to the default PostgreSQL plan was selected *a priori* as the Alternative plan



Modelling

- I. Embed raw SQL queries using an LLM
- Truncate embeddings using PCA (120 dimensions captures ~90% of variance)
- 3. Trained binary classifiers to steer between the Default Plan and the Alternative Plan produced by the selected hint*

LLMSteer

Evaluation

* Results shown for SVM with RBF kernel only, which was the best performing model.

[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015

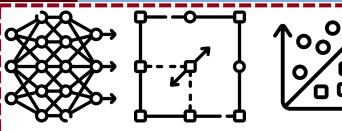
[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.

[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021.
 [4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

Penn Engineering

Training Data

- ~3000 SQL queries from the join order^[1] and cardinality estimation^[2] benchmarks
- 2. Gathered 48 well-known PostgreSQL hints used in prior work^[3-4]
- 3. Executed queries 5 times per hint mean latency was used for analysis
- 4. The hint with the best performance gains relative to the default PostgreSQL plan was selected *a priori* as the Alternative plan



Modelling

- I. Embed raw SQL queries using an LLM
- Truncate embeddings using PCA (120 dimensions captures ~90% of variance)
- Trained binary classifiers to steer between the Default and Alternative Plans produced by the selected hint*

LLMSteer

Evaluation

- . Stratified cross-validation
- 2. Query Optimization Metrics:
 - I. Cumulative execution time of queries (total latency)
 - II. 90th percentile latency of queries (*P90 latency*)
- 3. Classification Metrics:
 - I. Recall
 - II. AUROC
 - III. Accuracy

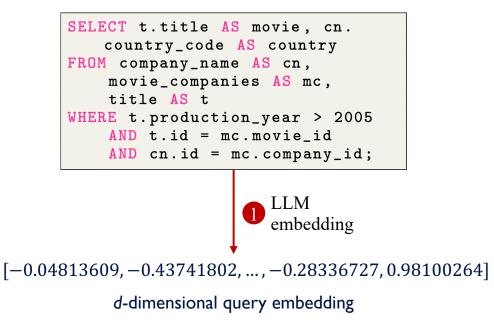
* Results shown for SVM with RBF kernel only, which was the best performing model.

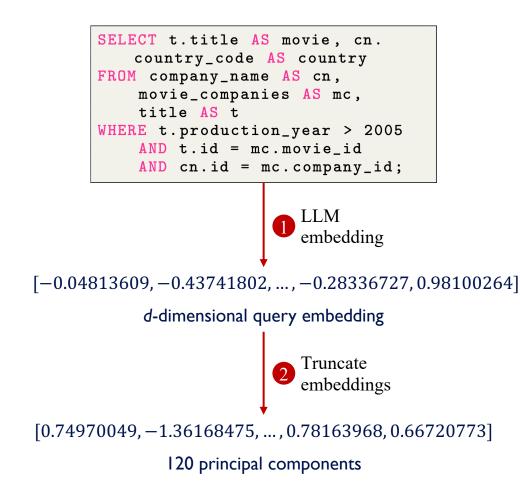
^[3] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 International Conference on Management of Data, New York, NY, USA, 2021. [4] R. Heinrich, M. Luthra, H. Kornmayer, and C. Binnig. Zero-shot cost models for distributed stream processing. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems. June 2022.

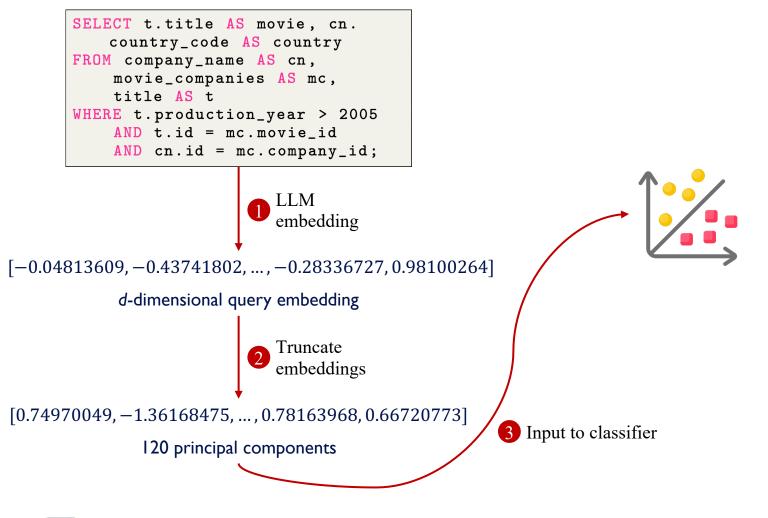
^[1] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment, Nov. 2015

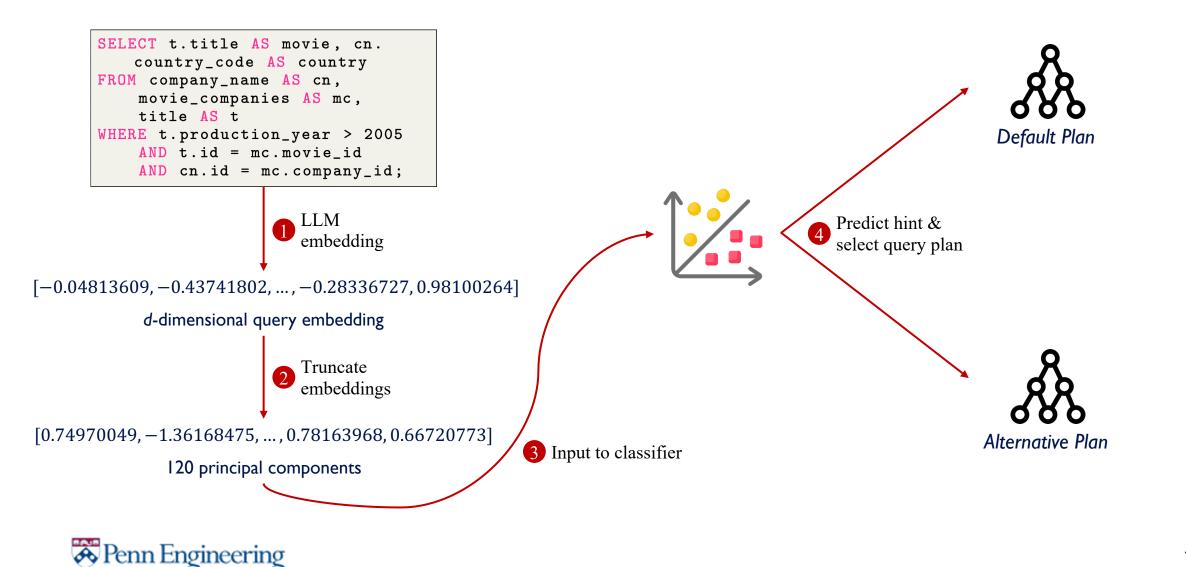
^[2] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proceedings of the VLDB Endowment, July 2021.

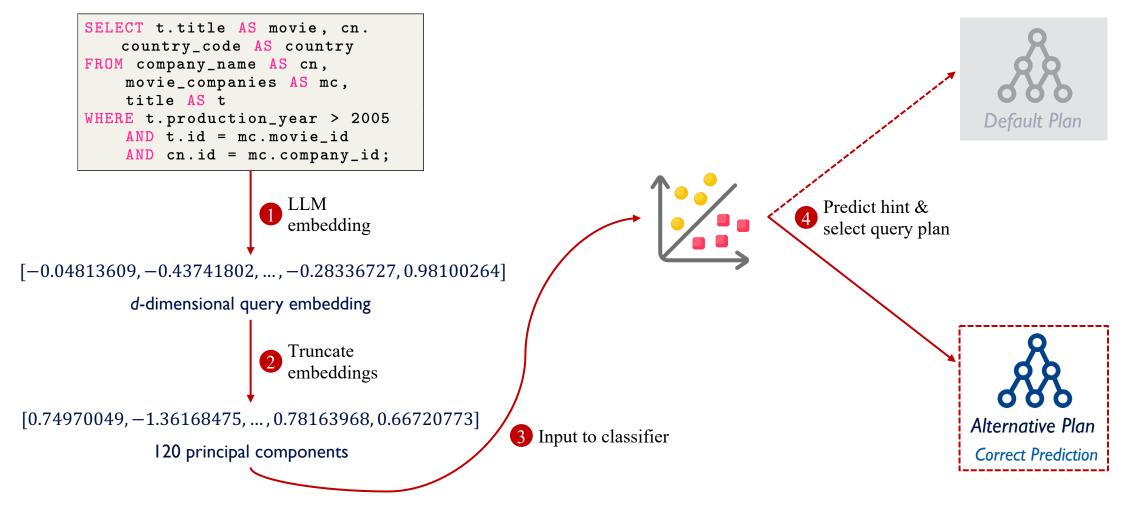
SELECT t.title AS movie, cn. country_code AS country FROM company_name AS cn, movie_companies AS mc, title AS t WHERE t.production_year > 2005 AND t.id = mc.movie_id AND cn.id = mc.company_id;

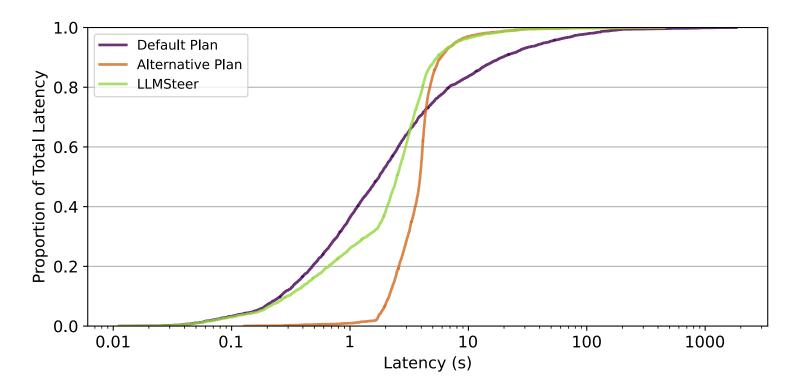








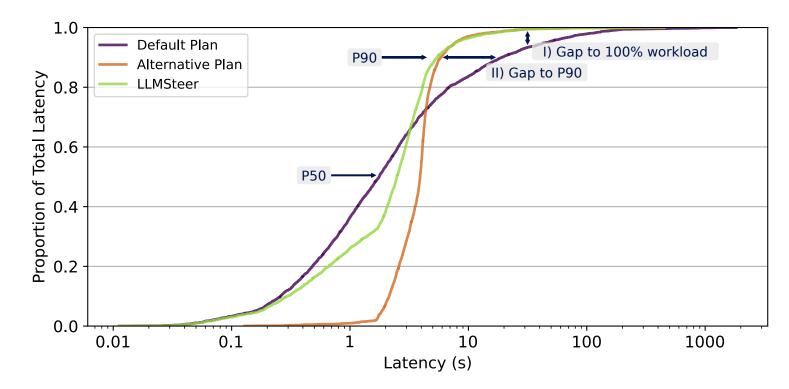




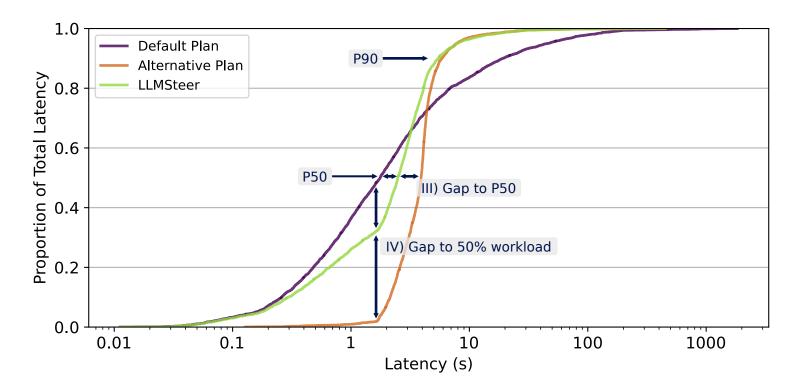
Empirical CDF of latency across cross-validation testing workloads

- Purple indicates selecting the default plan for all queries
- Orange indicates selecting the alternative plan for all queries

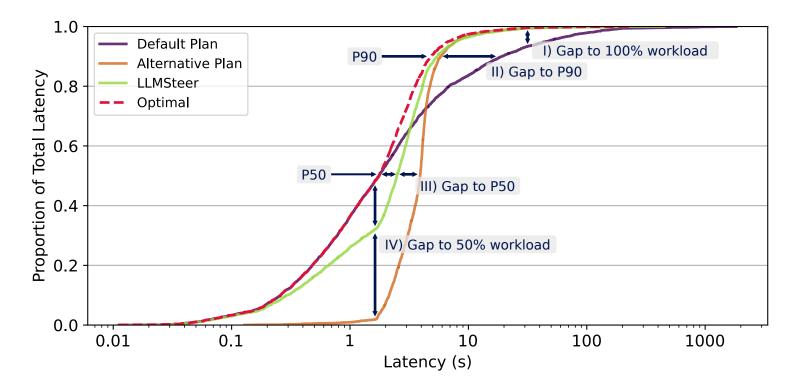
😽 Penn Engineering



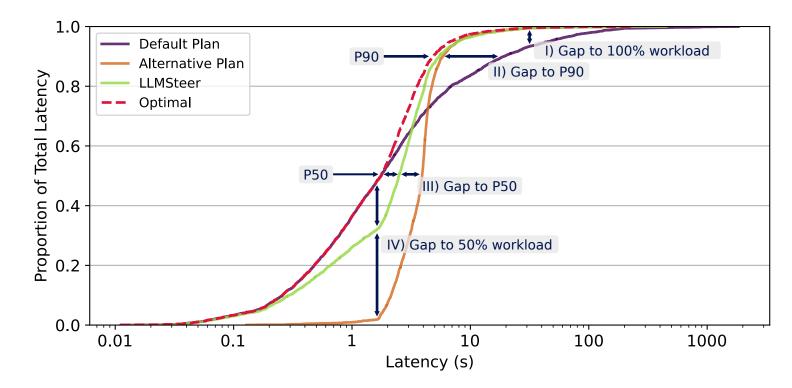
• LLMSteer outperforms both the default and alternative plans at the higher end of the distribution, achieving a lower P90 (II) and saturating just as fast the Alternative plan (I)



• LLMSteer improves on the alternative plan, lowering the performance gap to the default plan, capturing more of the total latency earlier and improving the median latency



• LLMSteer falls short of the optimal steering strategy, but effectively combines the benefits of the default PostgreSQL plan and the alternative



• The system can be seen as trading a small increase in median latency for a large reduction in P90 and total latency, a trade-off that is worthwhile in most practical applications

Challenges and Limitations

- Internet-scale language models
 - Were LLMs trained on the JOB and CEB benchmark data?
 - More broadly, how do we create benchmarks in this new LLM-era?

Challenges and Limitations

- Internet-scale language models
 - Were LLMs trained on the JOB and CEB benchmark data?
 - More broadly, how do we create benchmarks in this new LLM-era?
- Integration of LLMs into query pathways
 - No longer need to materialize query plans to perform optimization
 - No longer require internal database statistics
 - Must now integrate LLMs into query workflows and perform inference

Challenges and Limitations

- Internet-scale language models
 - Were LLMs trained on the JOB and CEB benchmark data?
 - More broadly, how do we create benchmarks in this new LLM-era?
- Integration of LLMs into query pathways
 - No longer need to materialize query plans to perform optimization
 - No longer require internal database statistics
 - Must now integrate LLMs into query workflows and perform inference

Reasons for Optimism

• We did not expect this to work, but clearly LLMs *can* represent something meaningful about program semantics that is helpful for query optimization

Challenges and Limitations

- Internet-scale language models
 - Were LLMs trained on the JOB and CEB benchmark data?
 - More broadly, how do we create benchmarks in this new LLM-era?
- Integration of LLMs into query pathways
 - No longer need to materialize query plans to perform optimization
 - No longer require internal database statistics
 - Must now integrate LLMs into query workflows and perform inference

Reasons for Optimism

- We did not expect this to work, but clearly LLMs *can* represent something meaningful about program semantics that is helpful for query optimization
- Quantization may play an essential role in improving latency and developing LLMpowered QOs

• We introduce LLMSteer, a simpler approach to query optimization using LLMs rather than internal database statistics.

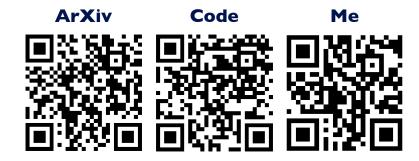
- We introduce LLMSteer, a simpler approach to query optimization using LLMs rather than internal database statistics.
- LLMSteer is effective on two query benchmarks relative to the PostgreSQL default plan the system reduces total and P90 latency by 72% and reduces median latency by 35% relative to the alternative.

- We introduce LLMSteer, a simpler approach to query optimization using LLMs rather than internal database statistics.
- LLMSteer is effective on two query benchmarks relative to the PostgreSQL default plan the system reduces total and P90 latency by 72% and reduces median latency by 35% relative to the alternative.

There are still far more open questions than answers!

Thank you! Questions?

Our group: https://db.cis.upenn.edu Our code: https://github.com/peter-ai/LLMSteer Reach me at: peterai@seas.upenn.edu



Appendix

• Syntax A is the original query formatting – single-line declarative statements with no newlines or indentation

"SELECT t.title AS movie, cn.country_code AS country FROM company_name AS cn, movie_companies AS mc, title AS t WHERE t.production_year > 2005 AND t.id = mc.movie_id AND cn.id = mc.company_id;"

• Syntax A is the original query formatting – single-line declarative statements with no newlines or indentation

"SELECT t.title AS movie, cn.country_code AS country FROM company_name AS cn, movie_companies AS mc, title AS t WHERE t.production_year > 2005 AND t.id = mc.movie_id AND cn.id = mc.company_id;"

• Syntax B introduces newline characters and uses whitespace for indentation

• Syntax A is the original query formatting – single-line declarative statements with no newlines or indentation

```
"SELECT t.title AS movie, cn.country_code AS country FROM company_name AS cn, movie_companies AS mc, title AS t WHERE t.production_year > 2005 AND t.id = mc.movie_id AND cn.id = mc.company_id;"
```

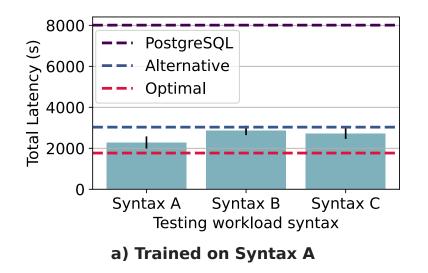
• Syntax B introduces newline characters and uses whitespace for indentation

• Syntax C introduces newline characters and uses tabs for indentation

"SELECT t.title AS movie, \tcn.country_code AS country FROM company_name AS cn, \tmovie_companies AS mc, \ttitle AS t WHERE t.production_year > 2005 \tAND t.id = mc.movie_id \tAND cn.id = mc.company_id;"

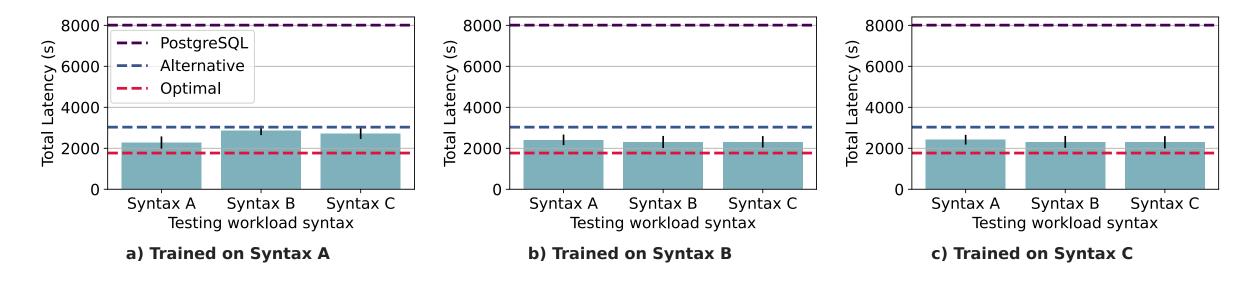
The original SQL queries were single line statements – we evaluate LLMSteer on query formats that align more closely with how queries are written in production systems

- Syntax A is the original query formatting single-line declarative statements with no newlines or indentation
- Syntax B introduces newline characters and uses whitespace for indentation
- Syntax C introduces newline characters and uses tabs for indentation



The original SQL queries were single line statements – we evaluate LLMSteer on query formats that align more closely with how queries are written in production systems

- Syntax A is the original query formatting single-line declarative statements with no newlines or indentation
- Syntax B introduces newline characters and uses whitespace for indentation
- Syntax C introduces newline characters and uses tabs for indentation



Renn Engineering