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Motivation

Hyperbolic neural networks (HNNs) are a emerging field AI that

leverage hyperbolic geometry to enhance neural network

performance.

Theoretical foundations of HNNs are still not fully understood.

Applying concepts from dynamical systems and ergodic theory

to the convergence of neural networks can lead to significant

improvements.

Ergodic theory also helps mitigate chaotic behavior during

training, leading to more stable and predictable training

dynamics.

Hyperbolic Geometry

Understanding how hyperbolic space is represented and

visualized using models is crucial.
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Figure 1:Different curvatures in geometry. At the bottom we have hyperbolic

spaces (left) and the Poincaré ball model (right).

We consider the set

Ln := {x ∈ Rn+1 : −x2
0 + ∑n

i=1 x2
i = −1, x0 > 0} and we fix its

origin y = (1, 0, . . . , 0) ∈ Ln.

In this setting the exponential map expy : TyLn → Ln is

invertible and its inverse is denoted by logy : Ln → TyLn.

Hyperbolic Neural Networks

For a, b, x ∈ Ln and α ∈ R, we define ⊕ and ⊗ by

a ⊕ b = expy(logy a + logy b) and α ⊗ x = expy(α logy(x)).

We define a Hyperbolic Neural Network as

f (x) = f1 ◦ f2 ◦ · · · ◦ fk(x)
fi(x) = σ⊗

i (W ⊗
i x ⊕ bi), 1 ≤ i ≤ k.

where Wi ∈ Rn×n, bi ∈ Ln and σ is the activation function.

Recall that we are always identifying TyLn ' Rn.

Ergodic Theory Basics

Let (M, B, µ, T ) be an ergodic dynamical system. A subadditive

cocycle over T is a measurable function φ : M × N0 → R
satisfying

φ(ω, n + m) ≤ φ(ω, n) + φ(T nω, m) for all ω ∈ M and n, m > 0.

Let X ⊂ Ln be a cone. A map f : X → X is called

subhomogeneous if for every x ∈ X and λ ∈ (0, 1) we have

f (λ ⊗ x) ≤ λ ⊗ f (x), whenever the order is possible.

Let f : TyLn → TyLn be subhomogeneous. Then, the induced

map on the hyperboloid f⊗ : Ln → Ln is also subhomogeneous.

Main Results

Let Y = expy(X), where X is the positive cone in Rn. Let

fi : Y → Y be a sequence of order preserving and

subhomogeneous maps such that Tm := logy ◦fm ◦ expy is a

stationary sequence of maps in X . Let zm = f1f2 · · · fm(z0) for a
fixed z0 ∈ Y . Then, we have

lim
m→∞ sup

1≤i≤n


√

2 arccosh(zm(0))√
‖zm‖2 − 1

zm(i)


1/m

= eλ.

Let (Ω, d0) be a compact metric space and consider a stationary

sequence of homeomorphisms Tm : Ω → Ω. Then, almost surely

there is a number λ such that

lim
m→∞

sup
x 6=y

d0(TmTm−1 · · · T1x, TmTm−1 · · · T1y)
d0(x, y)

1/m

= eλ.

Main Results

Let (M, g) be a Riemannian manifold. Fix y ∈ M and r > 0 such

that ϕ := expy : Br(0) ⊂ TyM → V := expy(Br(0)) is a
diffeomorphism. Consider a sequence fn : V → V consisting of

maps of the form f (x) = ϕ(W >σ(Wϕ−1(x) + b)), where
‖W‖ ≤ 1, σ is 1-Lipschitz componentwise and b ∈ TyM satisfy

fn(V ) ⊂ V , and such that f̃n(v) = W >
n σ(Wnv + bn)) is a

stationary sequence of layer maps in Rn. Then, as m → ∞,

almost surely there exist z ∈ V such that

1
m

⊗ f1f2 · · · fm(z0) → z.

An immediate application of this result is use it in the

hyperboloid model (or in any isometric model, e.g. the Poincaré

ball model).

Conclusions and future work

In this work, we extend neural network convergence results

from Euclidean spaces to Riemannian manifolds.

We proved the convergence of HNNs under certain conditions,

particularly in the Lorentz model, ensuring their stability and

predictability.

This work suggests that understanding parameter trajectories

can lead to new regularization methods that prevent overfitting

and enhance the generalization of neural networks.

Empirical validation of the theorems is necessary to confirm

their practical applicability and effectiveness in real-world

scenarios.

By using the exponential map and its inverse (when defined), it

would be interesting to study neural networks in specific

manifolds, e.g. the sphere, the torus, etc.
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