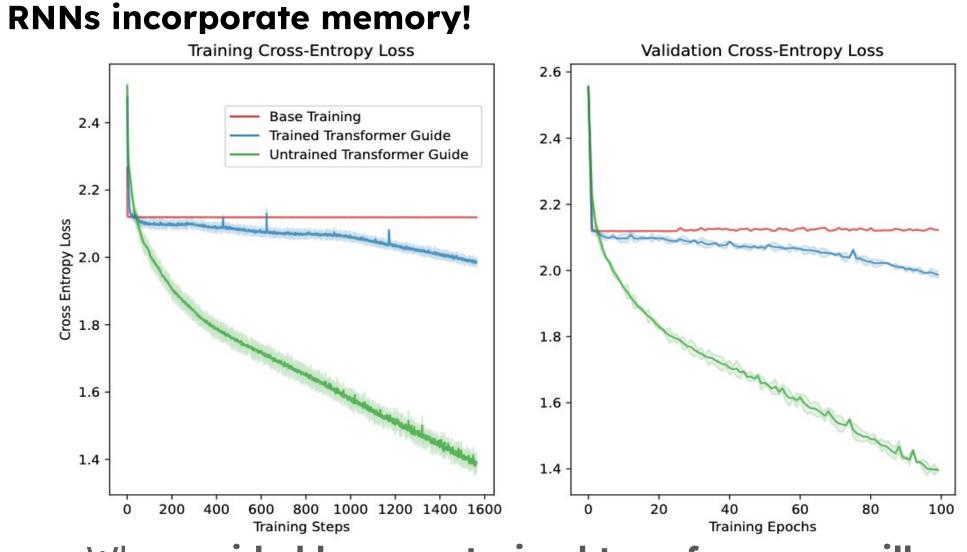

Training the Untrainable: Introducing Inductive Bias via Representational Alignment

Vighnesh Subramaniam, David Mayo, Colin Conwell, Tomaso Poggio, Boris Katz, Brian Cheung, Andrei Barbu MIT CSAIL; CBMM. <u>https://untrainable-networks.github.io/</u>

Abstract


- What makes networks like ConvNets trainable but networks like fully-connected networks difficult to train for a task like image classification? **Can we make FCNs trainable?**
- Our method does so by transferring the **inductive bias** from one network to another via representational alignment.

Guidance

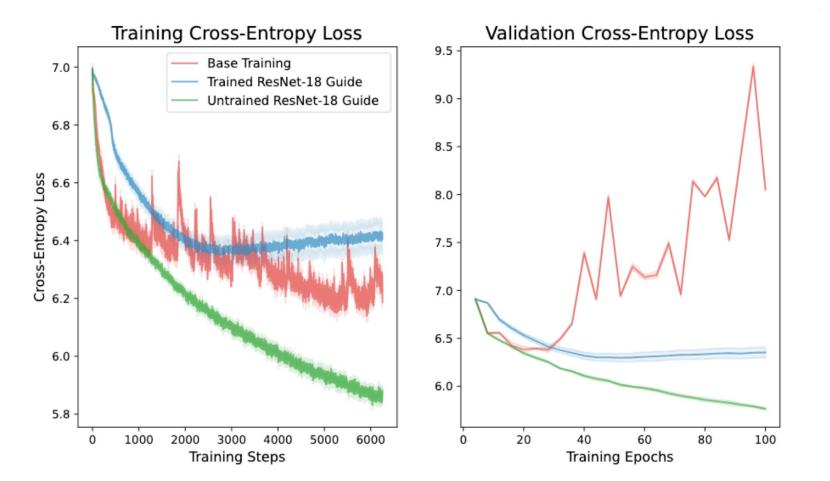
• **Guidance:** increase representational alignment between activations of an untrainable *target* network and

Sequence Modeling

- When guided by an untrained transformer, vanilla RNNs do better at copying, showing stronger incorporation of memory.
- Vanilla RNNs have been abandoned due to memory limitations but we show this may not be necessary!

Improving Sequence Modeling

activations of a trainable guide network during training.

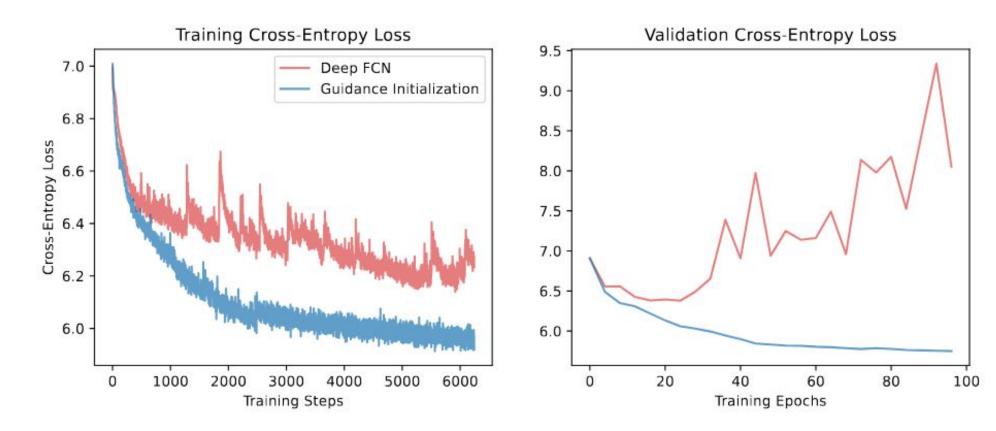

- Guidance transfers the **inductive bias** from one network to another.
- **Representation Alignment:** Similarity via Centered Kernel Alignment (CKA). Increase CKA at each training step.
- Architectural vs Training Inductive Biases: Guide network can be trained, transferring knowledge or randomly initialized, transferring architectural properties.
 - This distinguishes guidance from *distillation!*

Networks and Tasks

- Image Classification: ImageNet
 - Target: Deep FCN, Wide FCN, Deep ConvNet Guide: ResNet-18, ResNet-50
- Sequence Modeling: Copy-Paste, Parity, Language Modeling
 - Target: Vanilla RNN; Guide: Transformer

Image Classification

Preventing overfitting in fully-connected networks



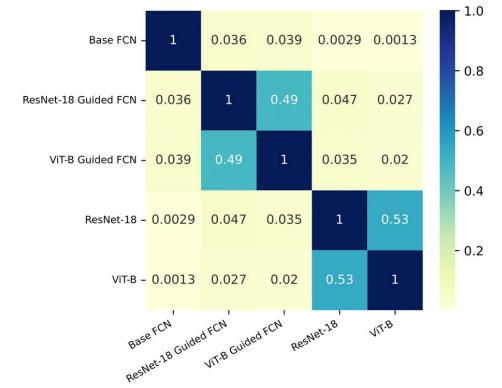
Experiment	Copy-Paste Accuracy (\uparrow)	Parity Accuracy (\uparrow)	Language Modeling Perplexity (\downarrow)
RNN	14.35 ± 0.01	100	69.19 ± 1.89
Untrained RNN		2.32 ± 0.41	—
Transformer	96.98	71.98 ± 3.16	34.15
Untrained Transformer	1.04 ± 0.81		51948.8 ± 90.44
$RNN \rightarrow Transformer$		$\textbf{78.49} \pm 2.16$	_
Untrained RNN \rightarrow Transformer		70.38 ± 4.17	—
Transformer \rightarrow RNN	23.27 ± 1.02	_	$\textbf{40.01} \pm 1.54$
Untrained Transformer \rightarrow RNN	42.56 ± 1.51	_	59.61 ± 2.33

- We can improve both RNNs and Transformers at incorporating memory and sequential state. RNNs teach Transformers and Transformers teach RNNs!
- We make RNNs competitive with Transformers on language modeling.
- Transformers struggle with certain sequence tasks like parity and we show that these can picked up by aligning with an RNN!

Analyses with Guidance

FCN Initialization

- Guidance can find new initialization strategies. We
- Guidance will prevent overfitting in FCNs and do this with a randomly-initialized guide network (ResNet-18 in this case)!


ImageNet Performance Gains

Experiment	ImageNet Top-5 Validation Accuracy (\uparrow)
ResNet-18	89.24
Untrained ResNet-18	0.24 ± 0.043
ResNet-50	92.99
Untrained ResNet-50	0.54 ± 0.029
Deep FCN	1.65 ± 0.51
ResNet-18 \rightarrow Deep FCN	7.50 ± 1.51
Untrained ResNet-18 \rightarrow Deep FCN	$\textbf{13.10}\pm0.72$
Wide FCN	34.09 ± 1.21
ResNet-18 \rightarrow Wide FCN	$\textbf{43.01} \pm 0.92$
Untrained ResNet-18 \rightarrow Wide FCN	39.47 ± 0.31
Deep ConvNet	70.02 ± 1.52
ResNet-50 \rightarrow Deep ConvNet	78.91 ± 2.16
Untrained ResNet-50 \rightarrow Deep ConvNet	68.17 ± 2.54

- Guidance improves image classification performance in traditionally difficult to train networks.
- Underfitting in Deep ConvNets and Wide FCNs is less of a concern!

first optimize representational alignment between the FCN and an untrained ResNet on noise for 150 steps. Then optimize on the task. This has no overfitting!

Error Consistency

• Do guide networks pass on their inductive bias to the targets? Using error consistency, we see that they do!

Conclusion

- Guidance provides a method to transfer inductive biases between networks.
- Can we get RNN language models? FCN image classifiers?
- Can we learn what makes a network prevent overfitting? Underfitting? Mathematical properties of neural networks?
- Can we find better ways to compare neural networks?