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Background

• Numerosity - the ability to perceive and estimate the number of items in a visual 
scene - is believed to be represented by “number-detector” units within 
Convolutional Neural Networks (Nasr et al., 2019; Kim et al., 2021)

• However, Karami et al. (2023), using Representational Similarity Analysis (RSA) 
demonstrated that CNNs fall short of explaining the variance in numerosity 
representation observed in the brain.



Background

• The classical RSA framework (Karami) assumes equal contribution of all features, 
which can underestimate the correspondence between models and behavior 
data.

• Moreover, this approach may overemphasize irrelevant features, potentially 
overlooking behaviorally relevant information like number-detector units.



Our contribution

• We used a pruning approach to identify units in CNNs that best represent 
numerosity at the population level and improve alignment with behavioral data.

• Pruning removes the redundancy in pretrained models, retains only the most 
relevant units for numerosity representation.



Models and stimuli

• Models:
• Pretrained CORnet-Z and CORnet-S (Kubilius et al., 2018).

• 3 versions: trained on ImageNet, trained for numerosity discrimination (DeWind et al., 2015), 
and untrained.

• Target layers: V1, V2, V4, IT.

• Stimuli: Visual dot sets with varying 
numerosities and visual features.

• Behavioral number RDM: simulated 
logarithmic distance between the 
pairs of condition.



Pruning method

• Pruning (Tarigopula et., 2023) involves 3 steps:
1. Importance Assessment: Each unit is individually removed, and the resulting RDM is 

compared to the number RDM. Significant drops in score indicate important units; smaller 
drops or increases suggest unimportant or noisy units.

2. Ranking: Units are ranked from most to least important based on their impact on the RDM 
score.

3. Sequential Reintroduction: Units are reintroduced in ranked order, and the RDM fit is 
reevaluated after each addition. The process stops when the highest RSA score is 
achieved, defining the "retained units."

• Compare with:
• Full (unpruned) model 

• Number-detector units identified via ANOVA (Nasr et al., 2019; Kim et al., 2021) 



Retained Units and Number-Detector Units Often 
Do Not Overlap

• Little to no overlap was observed in the IT layer of both models and in the V4 
layer of CORnet-S.

• Significant overlap was found in the V2 and V4 layers of CORnet-Z, and in the V1 
layer of CORnet-S. 

• Only 3 cases showed a perfect overlap score of 1, while 7 cases had a score of 0.



Retained Units Fit the Behavior Data Better than 
Number-Detector (ANOVA) Units

RSA Pearson correlations



Conclusions

• Using RSA on pruned models, we tested if traditional number-detector units in 
CNNs can capture numerosity

• The results show that number-detector units in CNNs are not essential for 
numerosity representation.

• Future directions include using explainable AI to decode selected units, exploring 
more naturalistic datasets, and extending analyses to the language domain.
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