Semi-Supervised Fine-Tuning of Vision Foundation Models with Content-Style Decomposition

UNIVERSITE

Mariia Drozdova, Vitaliy Kinakh, Yury Belousov, Erica Lastufka, Slava Voloshynovskiy

Université de Genève

{mariia.drozdova, vitaliy.kinakh, yury.belousov, erica.lastufka, svolos}@unige.ch

The [CLS] token \mathbf{y}_x is decomposed into:

- Content c_{a_x} : Task-specific class information (one-hot encoding). - Style s_{a_x} : Auxiliary Gaussian noise representing variations.

Key Losses:

- Cross-Entropy for content prediction: $\mathcal{L}_{\mathbf{c}_{ax}}$
- Cosine Similarity for CLS reconstruction: $\mathcal{L}_{\mathbf{v}_{x}}$.

- KL Divergences for regularizing content, style and reconstruction distributions: $\mathcal{D}_{\mathbf{c}_{a_x}}, \mathcal{D}_{\mathbf{s}_{a_x}}, \mathcal{D}_{\mathbf{y}_x}$

 $\mathcal{L}_{\text{total}} = \mathcal{L}_{\mathbf{c}_{a_{x}}} + \lambda_{c} \mathcal{D}_{\mathbf{c}_{a_{x}}} + \lambda_{s} \mathcal{D}_{\mathbf{s}_{a_{x}}} + \lambda_{y} \mathcal{D}_{\mathbf{y}_{x}} + \lambda_{y} \hat{y} \mathcal{L}_{\mathbf{y}_{x}}$

Experiments

arXiv:2410.02069