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Foundation models, pre-trained on vast datasets, show strong generalization but 

struggle with:	

- Distribution shifts: Downstream data often differs from pre-training data.	

- Low-labeled regimes: Labeled data is costly in domains like astronomy and medicine.	

	

Our approach uses semi-supervised fine-tuning with a novel content-style 

decomposition framework to enhance adaptation to downstream tasks with limited 

labeled data.
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Scientific domains often have:	

- Abundant unlabeled data but limited labeled samples.	

- Tasks requiring adaptation to domain-specific datasets (e.g., GalaxyMNIST, SVHN).	

Key Question: Can unlabeled data help fine-tune foundation models for 

distribution-shifted downstream tasks?

Models:
- RADIOv2
- CLIP 
- DINOv2

Scenarios:
- Frozen backbones 
(only classifier is 
fine-tuned) 
- Trainable 
backbones (full 
model updates)

Evaluation: Compare
supervised and semi-
supervised fine-
tuning.

Regularizing the latent space (content and style) ensures task-relevant 
information is preserved while discarding noise.

Frozen vs. Trainable:
Frozen backbones excel in low-labeled regimes.Trainable models adapt better 
for complex tasks with more labeled data.

- It improves performance in low-labeled regimes by leveraging unlabeled data 

effectively..	

- Semi-supervised fine-tuning bridges the gap between pre-trained models and 

downstream tasks, especially for out-of-distribution data.	

- In the Future we would like to test classification on larger and more complex datasets 

like DomainNet and ImageNet variations and to apply the method to object detection 

and segmentation tasks.
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The [CLS] token        is decomposed into:	

  -  Content        : Task-specific class information (one-hot encoding).	

  -  Style        : Auxiliary Gaussian noise representing variations.	

	

Key Losses:	

	

  -  Cross-Entropy for content prediction:        .	

  -  Cosine Similarity for CLS reconstruction:       .	

  -  KL Divergences for regularizing content, style and reconstruction 

distributions:          ,         ,         .


