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3 billion people depend on healthy oceans



For Example

Review In Fisheries
e Crushingly Expensive

e Too slow for timely fishing data

e (Cannot scale
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Well... Not Quite



Limitations of Top-down Computer Vision

Generalization

e T[raditional models struggle with dynamic and diverse environments, even
within the same domain.

Long-Tailed Distributions

e Difficulty in identifying rare or unseen species due to imbalanced data. Or
entirely missing data.



Limitations of Top-down Computer Vision

Domain Transfer
e Models require retraining or tuning for new environments or conditions.
Decision Provenance

e Explainability is possible only with reverse engineering and not a
first-class feature.



Limitations of Top-down Computer Vision
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Long-Tailed Distributions
Domain Transfer

Decision Provenance

10



Bottom-Up Learning

11



Vision Language Models

Self-supervised Pre-training

+

Contrastive Learning

+

Diverse and Varied Training Data
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Method
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Preliminary Results

Table 1: Classification accuracy of baseline vs. our VLM-RAG approach on 5 categories. We measure
both performance of final prediction (single answer response) and intermediate RAG retrieval.

Accuracy
Method Top-1 Top-2 Top-3
InceptionV3 (Baseline) 0.7501 0.8312 0.9408

VLM-RAG (Ours, Final Prediction) 0.8403 N/A (single answer) N/A (single answer)
VLM-RAG (Ours, RAG Retrieval) 0.8684 0.9527 0.9781
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Preliminary Results

Precision by category w/wo retrieved description.
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Next Steps
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Impact and Conclusion
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Accurate, faster and more accessible deployments of marine life monitoring.™

Significantly more informed and effective responses to changing climates.
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