Stanford University

CTU

ML for Generative
Modelling of EV Charging
LLoad Profiles

Marek Miltner et al.

NeurlPS CCAI, s
December 2024 W
g

Climate Change Al

o
DY




Motivation and context




Motivation

- Electric vehicles are becoming more
common, with them comes demand for
chargers and charging itself

- However, infrastructure for charging is
not easy or quick to build

- Conflicting trends:
- Charging demand is accelerating

- Itis more and more difficult to build charging
stations

- Can we better characterise EV charging?
- To build infrastructure more efficiently
- To detect systemic challenges in capacity

- To utilize EV charging potential in grid
balancing
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Current situation: in some places, potentially

reaching an inflection point

Kumulativni vyvoj po&tu registraci osobnich elektrickych vozidel a dobijecich bodi

(*stav k 30.6.2021)

- Blue: EV
registrations

- Red: EV Charging
points installed
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Building on previous work at Stanford

- Building on paper in Nature Energy:
“Charging infrastructure access and
operation to reduce the grid
impacts of deep electric vehicle
adoption” by Powell, S. et al.

* First characterisation of EV charging
demand between public and private
EV chargers, with breakdown to
sources of demand

* Focus geography: California

Fig. 2: Profile of aggregate EV charging demand illustrated for each infrastructure
and control scenario.
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a,b,d,e, The uncontrolled profiles for a typical weekday (left) and weekend (right) are shown for
Universal Home access (a); High Home access (b); Low Home, High Work access (d) and Low Home,
Low Work access (e). f-j, The weekday profile is shown for one example of each type of control:
midnight SFH timers with Universal Home access (f); 9 p.m. SFH timers with High Home access (g);
workplace peak minimization with Low Home, High Work access (h); workplace average emissions
minimization with Low Home, Low Work access (i); and random SFH timers between 8 p.m. and 2:30
a.m. with High Home access (j) (Methods). Profiles are illustrated for full electrification for the US
states in WECC to show the maximum modelled demand. Demand is aggregated in local time for this
illustration, but in the simulation the two time zones are reflected and there is a1 h delay between the
timers set on Pacific and Mountain Time. ¢, Business As Usual is a special case of High Home access
with a mixture of residential timers at 8 p.m., 9 p.m., 10 p.m. and midnight and peak minimization
workplace control. The weekday and weekend profile for each scenario is repeated to compile the full
year's charging demand. L2 stands for Level 2 charging and DCFC stands for Direct Current Fast

Charging.
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Data pipeline




General work data flow scheme
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Ints

Data showcase
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Data showcase - Area typology
Typology per ZSJ - Basic Administrative Unit (BAU)
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Basic Administrative Unit (ZSJ) Categories

Original Czech name

English translation Colour

Obytna plocha v kompaktni zastavbé

Compact residential area

Méstskd a piimestska smiSend plocha

Urban and suburban mixed area

Obytné rekreacni plocha

Residential and recreational area

Odlouc¢end obytnd plocha

Separated residential area

Dopravni aredl

Transportation infrastructure area

Aredl obCanské vybavenosti

Civic amenities area

Rekreac¢ni plocha

Recreational area

Ostatni dcelovd plocha Urban and suburban mixed area Lime
Primyslovy aredl Industrial area Pink
Rezervni plocha Reserve area Yellow

Zemédelska plocha

Agricultural area

Lesni plocha

Forest area

14.4 1

4.5

Longitude

14.7




Results




Charging and chargers share development per type
in the dataset (2020-2022)

Share of ¢
charging ¢
sessions ¢
per BAU :
type
Share of
charger
points per

BAU type
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Monthly Share of Charging Instances in Prague by ZS) Type
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Machine learning based generative Al approach to
EV charging demand curves based on data
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Limitations and next steps

Limitations

* Limited timeframe of
currently analyzed dataset

e Currently narrowly defined
geography used for
demonstration

* Some features not explored
or unavailable, such as
population movement or EV
adoption per location

Next Steps

Expanding timeframe of dataset

Improving explainability by visualising
effect of individual inputs onto resulting
load curve shape

Expanding the robustness of our findings
through validation on data from different
geographies

Connecting the dots:

* Where and when will we reach
infrastructure (wire, transformer, ...)
capacity due to EV charging?

e Can we use the capacity of EVs plugged in
to public chargers to balance the grid?
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Conclusion




Conclusion

1 Location of public EV chargers greatly affects their load curve
shapes during the day
2 We can use generative Al to reliably predict EV load curves even

in locations where EV chargers are not yet present

3 This can help Distribution System Operators (DSOs) in efficiently
planning infrastructure expansion
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Thank You

contact: marek.miltner @stanford.edu
marek.miltner @cvut.cz
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