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Motivation: Specification Problem

e We want to deploy a model
for chest X-rays to all
regional hospitals
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e They want to specify
acceptable levels of
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What are trustworthiness objectives for ML?

Values Objective Examples

Mechanisms

Utility Accuracy

Differential Privacy (DP Loss)

Privac
Y Unlearning

Demographic Parity (DemParity)
Fairness  Equality of Odds
Disparate Impact

Architecture search, optimizer
search, etc.

DP mechanisms: Noising,
Randomized Response, etc.

DemParity processors
and regularizers

and many more (interpretability, robustness to distribution

shifts/adversarial examples, etc.)
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Privacy Objective: Differential Privacy

Definition ((e, 9)-Differential Privacy)

Let M: D* — R be a randomized algorithm that satisfies
(e,0)-DP with e € Ry and ¢ € [0, 1] if for all neighboring
datasets D ~ D’, and for all possible subsets R C R of the result
space M satsifies

P[M(D) € R] < & -P[M(D') € R] +6



Fairness Objective: Demographic Parity

Definition (Demographic Disparity)

rDemParity(kvz) = IP>[§\/ = k/ ‘ Z= Z] _]P)[V = k/ ’ 4 7£ Z]

where Y = w(x,z) are model w : X x Z — K predictions for
samples with sensitive attribute z.

Definition (y-disparity)
Vze Z Vk € K,
rDemParity(kaZ) <v



ML trustworthiness as multi-objective optimization

min,, lace (W)
subject to oy (W) < € (1)
Efair (w) <x

where (Cace, orivs Urair) € RS are the loss functions for each of the
utility, privacy and fairness criteria, respectively.
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ML trustworthiness as multi-objective optimization

Treated as hyper-parameters

min,, lace (W) ‘
subject to  Lpriv{w)}<€ (1)
G (w) <7

where (€acc, Coriv, Yhair) € R3>0 are the loss functions for each of the
utility, privacy and fairness criteria, respectively.

e Problem 1: Privacy is ensured at the level of mechanism
(here, the ML pipeline) = We do not have a sample-based
privacy loss

e Problem 2: Trustworthy parameters are treated as
hyper-parameters, not first-class objectives = Pre-Selection
Bias



Pre-selection Bias

Accuracy

Figure 2: Pre-selection of trustworthiness parameters only recovers
a portion of the Pareto frontier. The remaining parts of frontier
(shaded blue) are never explored.
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Fairness pre-processing increases the cost of private training

Theorem

Assume the training dataset

D={(x,z,y) | xe X,z€ Z,y € Y} is fed through the
demographic parity pre-processor Ppre following an ordering
defined over the input space X. Let Ppr enforce a maximum
violation v, and |Z| = 2. Suppose now M is an (e,0) training
mechanism, then M o Py is (Kye, K,e%7¢5)-DP where

K7:2+{12%J.
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Algorithm 1 Confident-GNMax Aggregator

Input: query data point x, sensitive attribute z, predicted class label k, subpop-
ulation subclass counts m: Z x K+ Z>o

Require: minimum count M, threshold T, noise parameters o1, o2, fairness
violation margin

1: if max;{nj(x)} + N(0,0%) > T then

2: k < arg max; {nj(x) + N(0,03)}

3: return k

13: else
14: return L

11



Algorithm 2 Confident& Fair-GNMax Aggregator

Input: query data point x, sensitive attribute z, predicted class label k, subpop-
ulation subclass counts m: Z x K+ Z>o
Require: minimum count M, threshold T, noise parameters o1, o2, fairness
violation margin
if max;{n;j(x)} +N(0,0%) > T then
k < arg max; {nj(x) + N(0,03)}
if >°; m(z,k) < M then
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return k
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30 if Yy m(z,k) < M then

4: m(z, k) < m(z, k) +1

5: return k

6: else

m(z 5, m(3,k

r if (Z;sn’(%l)ﬂ - EE:k ni(z)) <9 H=m
8: m(z, k) < m(z, k) +1

9: return k
10: else
11: return L
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Closing the fairness gap with Reject-Option for Fairness

e Optimizing for fairness during the training process does not
guarantee that fairness is obtained at inference time

e What if there were a hard constraint on fairness violations at
inference time?

e A reject-option allows to refuse to answer a query at
inference time for fairness purposes.

e Introduces a new utility dimension:

. # Queries Answered
Coverage := % Quorics

ii5)



Algorithm 5 Inference-time Demographic Parity Post-
Processor (IDP3)

Input: data point x, sensitive attribute z, predicted label ¥,
subpopulation-class counts m : Z x YV +— Zx>g
Require: minimum count M, fairness violation margin
1. if 32, m(z,7) < M then
2 m(z,y) < m(z,9)+1

3: return y

4: else

s i (e - Bt ) <o then
6: m(z,y) < m(z,y)+1

7 return y

8: else

9: return L
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Results



FairPATE Pareto-dominates similar designs in most contexts
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Conclusion: Specification requires objective-impartiality!
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Thank youl!
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