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Setup and Motivation

Counterfactual explanations have been developed to cope with
the idea of explaining a machine learning model algorithmically

A counterfactual, x , represents a perturbation of the input x
within the framework of a tree-based binary classification
model f

The perturbation is designed to yield a divergent prediction
such as f (x) ̸= f (x)
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FOCUS

FOCUS [1] can be applied to non-differentiable models such as
tree-based algorithms to generate counterfactual explanations

This can be done by introducing a probabilistic model
approximation sig(z) = (1 + exp(σ · z))−1, where σ ∈ R>0

Approximated activation tj(x)
with sigmoid function

Decision tree with sigmoid
functions approximation
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Goal

This paper investigates:

Whether FOCUS can generate counterfactuals for all instances

If the mean distance between the original input x and
generated counterfactuals x is smaller than the existing
method

If FOCUS can perform well with other datasets rather than
already tested ones

How hyperparameters of FOCUS affect its performance
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Experimental setup - Data and Evaluation

This paper applied FOCUS on the Decision Tree (DT), Random
Forest (RF) and Adaptive Boosting (AB) model on 4 datasets and
evaluated them with 4 distance metrics.

Dataset Sample size # of features Positive class ratio

Wine [2] 4,898 9 22%
HELOC [3] 10,459 23 48%
COMPAS [4] 6,172 6 48%
Shopping [5] 12,330 9 15%
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Results - Reproducibility

The main findings are:

FOCUS can find counterfactual explanations for all instances
in the datasets

There were slight deviations from the original paper in terms
of the mean distances

Yet, half of them outperformed the existing method’s score
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Results - Generality

To examine the generality of FOCUS, this paper applied FOCUS
on the German Credit dataset [6].
This paper found:

FOCUS can find counterfactual explanations for all instances
of the DT model

This study was unable to run one experiment due to the large
memory consumption
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Results - Hyperparameters

This study found that the quality of model approximation has a
significant effect on the performance of FOCUS.

Figure: Found counterfactual
explanations % on COMPAS
dataset

Figure: Hyperparameter
importance for the 4 datasets
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Conclusion

FOCUS can find counterfactuals for most instances across the
experiments

The majority of those counterfactuals have smaller distances
than the existing method’s counterfactual explanations

The computational cost of FOCUS can be demanding, which
leads to a run failure

Hyperparameters, especially sigma have a significant effect on
the performance of FOCUS
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