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Speakers



Thoughtful use of AI is challenging

● Recent advances are truly exciting, e.g., natural language interface to computing 
through LLMs

● Salient challenges remain for their reliable deployment and use
● Main value prop is also its main shortcoming: difficult to assess when said automated 

predictions and feedback are trustworthy

AI’s main value proposition: omni-present feedback generation 
through codification of patterns



Some failures are not hard to spot

https://docs.google.com/file/d/10pSIYpGH8A6lMnIf1zJ5cWFDoO9EGxGA/preview


Some failures are not hard to spot

● Correlation is no substitute for causal evidence
● COVID prediction AIs were found to be “picking up on the text font that certain 

hospitals used to label the scans.”
● “As a result, fonts from hospitals with more serious caseloads became predictors of 

covid risk.”



Some failures are not hard to spot



Some are not so easy

https://docs.google.com/file/d/10oU1JnPjAvib-HS8ZdFy-pX-oVcFcfuY/preview


Some are not so easy



Some are not so easy



System level of view of AI

● Building a reliable AI stack requires a holistic view 

● Since rigorous benchmarking is the foundation of empirical progress, we begin with how we 
can evaluate the robustness of AI models

Data Collection Model Training

Model EvaluationDeployment



Part 1: Benchmarking performance under distribution shift

Part 2: A critical review of existing approaches

Part 3: Application-specific modeling of data heterogeneity 

Part 4: Towards heterogeneity-aware machine learning

Outline



History

● Lots of research on distribution shifts and robustness in causal inference, operations 
research, economics, control theory, and statistics

● ML researchers like Masashi Sugiyama and Kate Saenko studied particular types of 
distribution shift in ‘00s, and a wave of algorithmic papers followed in ‘10s

● Most recently, exciting developments in benchmarking model robustness
○ Rigorous benchmarking is the foundation of empirical progress



Slide credit: Ludwig Schmidt



● Drove the bulk of empirical progress in AI for multiple years from 2010



Slide credit: Ludwig Schmidt



ImageNet V2

●

Slide credit: Ludwig Schmidt

Big drop



Slide credit: Ludwig Schmidt



Benchmarking distribution shifts

https://wilds.stanford.edu/



X-shifts vs. Y|X-shifts



X-shifts vs. Y|X-shifts

● So far: Humans are robust on all distributions. Can we get a universally good model?
● Implicitly, this view focuses on covariate shift (X-shift)

○ Traditional focus of ML

● On the other hand, we expect Y|X-shifts when there are unobserved factors
○ Traditional focus of causal inference

● For Y|X-shifts, we don’t expect a single model to perform well across distributions
● Requires application-specific understanding of distributional differences



● Look at loss ratio of deployed model vs. best model for target

Even tabular benchmarks mainly focus on X-shifts



● Look at loss ratio of deployed model vs. best model for target

Existing tabular benchmarks mainly focus on X-shifts

Liu, Wang, Cui, Namkoong, On the Need for a Language Describing Distribution Shifts: Illustrations on Tabular Datasets



● 7 spatiotemporal and demographic shifts from 5 tabular datasets

● Out of 169 source-target pairs with significant performance degradation, 80% of them 
are primarily attributed to Y|X-shifts.

WhyShift

https://github.com/namkoong-lab/whyshift

arxiv github

https://github.com/namkoong-lab/whyshift


Y|X-shifts

● We can’t just compare models based on their out-of-distribution performance
● It may not be feasible to simultaneously perform well across source and target
● We need to build an understanding of why the distribution changed!
● Previously observed empirical trends break if we look at Y|X-shifts



● Source and target performances correlated only when X-shifts dominate

Accuracy-on-the-line doesn’t hold under strong 𝑌|𝑋-shifts

Accuracy on the line: on the strong correlation between out-of-distribution and in-distribution generalization. On the Need for a Language Describing Distribution Shifts: Illustrations on Tabular Datasets

https://github.com/namkoong-lab/whyshift


● Source and target performances correlated only when X-shifts dominate

Accuracy-on-the-line doesn’t hold under strong 𝑌|𝑋-shifts

Accuracy on the line: on the strong correlation between out-of-distribution and in-distribution generalization. On the Need for a Language Describing Distribution Shifts: Illustrations on Tabular Datasets

https://github.com/namkoong-lab/whyshift


● Measuring, understanding, and mitigating failures is nuanced
● “Modeling research” refers to building a simplified caricature of the real-world 

problem that we can analyze and understand
○ Not to be confused with “modeling” in the tech world

● Tremendous domain expertise is required to arrive at a concrete formulation
○ Often referred to as “institutional knowledge”

● Considered a first-order problem in disciplines like Economics, Operations Research, 
and Statistics. AI/ML community has long neglected this dimension. 

Modeling: an application-driven perspective



● More than ⅓ of deaths in US hospitals due to sepsis
● Epic Sepsis Model widely deployed as an early warning 

systems for sepsis in hundreds of US hospitals 
● Developed based on data from 400K patients across 3 health systems from 2013-15
● Recent external validation found the model’s performance to be substantially lower 

than vendor claims
○ Failed to identify 93% sepsis patients who did not receive timely administration of antibiotics
○ Also did not identify 67% of sepsis patients despite creating a large burden of alert fatigue

Example: EPIC’s sepsis risk scores

Wong et al., External Validation of a Widely Implemented Proprietary Sepsis Prediction Model in Hospitalized Patients, JAMA, 2021



● It’s common for risk scores developed on data from a particular region (North 
Carolina) to not generalize to other regions (New York)

● We need to better understand the level of heterogeneity that exists in data
○ How different are the patients from the two regions?

● How do we catch these failure modes?
○ More rigorous evaluation protocols

● How do we diagnose the cause of this failure?
○ Differences in age? Differences in latent factors? (e.g., genetics)

● Which interventions do we take to mitigate such failures?
○ Need better data collection mechanisms and algorithms
○ Resource constraints must be more explicitly modeled

Example: EPIC’s sepsis risk scores



Modeling data heterogeneity

ML models are based on heterogeneous data sources

● multiple environments 
● different Y|X distributions
● different data size

Today: opportunities and challenges of heterogeneity

Training 
Data

Target 
Data



Data Heterogeneity Matters

Ignoring heterogeneity makes models ignore underrepresented groups



Data Heterogeneity Matters

Ignoring heterogeneity makes ML algorithms fail to generalize

Self-Driving



Data Heterogeneity Matters

Ignoring heterogeneity makes ML algorithms unreliable

Health Care

Selection bias in data leads models 
to focus on spurious correlations



Data Heterogeneity Matters

Ignoring heterogeneity brings unreliable scientific discoveries

Social Science

Even for carefully 
designed randomized 

trials, there is 
large selection bias



Outline

Part 1: Benchmarking performance under distribution shift

Part 2: A critical review of existing approaches

Part 3: Application-specific modeling of data heterogeneity

Part 4: Towards heterogeneity-aware machine learning



Terminology

● “Distribution shift” refers to mismatch between training distribution P and target 
distribution Q

● “Distributional robustness” refers to model performance not becoming worse even 
when Q is different from P

● “Heterogeneity” refers to the diverse mixture of distributions that generated the data, 
including both training and target



Two existing approaches to distribution shift

1. Make modeling assumptions 

2. Scale up data and models



Two existing approaches to distribution shift

1. Make modeling assumptions

 

2. Scale up data and models



Distributionally Robust Optimization (DRO)

Empirical Risk 
Minimization

DRO 

Instead of minimizing loss over training distribution, 
minimize loss over distributions near it

distance between 
distributions



Distributionally Robust Optimization (DRO)

DRO 
distance between 

distributionsTraining 
distribution

old

young Consider different mixture ratios 
of young and old people!



Distributionally Robust Optimization (DRO)

Empirical Risk 
Minimization

DRO 

1. Define set of distributions you care about
2. Minimize loss on worst distribution in this set

distance between 
distributions



Examples: set of distributions we care about
recall the objective

f-divergence: about densities

If              is “near 1”, then Q and P are near.

For a convex function,



Examples: set of distributions we care about
recall the objective

f-DRO: reweight data

training 
distribution



Examples: set of distributions we care about
recall the objective

f-DRO: reweight data

training 
distribution



Examples: set of distributions we care about
recall the objective

f-DRO: reweight data

training 
distribution



Examples: set of distributions we care about
recall the objective

Wasserstein distance: earth-mover’s distance that considers geometry

the minimal cost to 
transport Q to P



Examples: set of distributions we care about
recall the objective

Wasserstein-DRO: perturb data

training 
distribution



Examples: set of distributions we care about
recall the objective

Wasserstein-DRO: perturb data

training 
distribution



Examples: set of distributions we care about
recall the objective

Wasserstein-DRO: perturb data

training 
distribution



Intuition: f-divergence vs Wasserstein distance
recall the objective



More Methods:

● Marginal DRO: only perturbs marginal distribution
● Sinkhorn DRO: adds entropy term to regularize Wasserstein distance
● Geometric DRO: uses geometric Wasserstein distance
● MMD DRO: uses MMD distance
● Holistic DRO: uses a mixture of distances
● Unified (OT) DRO: unifies Wasserstein distance and   -divergence

DRO: set of distributions we care about: there are lots!

For more about DRO, please refer to the survey of DRO: Rahimian, H., & Mehrotra, S. 
(2019). Distributionally robust optimization: A review. arXiv preprint arXiv:1908.05659.

Duchi, J., Hashimoto, T., & Namkoong, H. (2023). Distributionally robust losses for latent covariate mixtures. Operations Research, 71(2), 649-664.
Wang, J., Gao, R., & Xie, Y. (2021). Sinkhorn distributionally robust optimization. arXiv preprint arXiv:2109.11926.
Liu, J., Wu, J., Li, B., & Cui, P. (2022). Distributionally robust optimization with data geometry. In NeurIPS.
Staib, M., & Jegelka, S. (2019). Distributionally robust optimization and generalization in kernel methods. In NeurIPS.
Bennouna, A., & Van Parys, B. (2022). Holistic robust data-driven decisions. arXiv preprint arXiv:2207.09560.
Blanchet, J., Kuhn, D., Li, J., & Taskesen, B. (2023). Unifying Distributionally Robust Optimization via Optimal Transport Theory. arXiv preprint 
arXiv:2308.05414.



An easy-to-use codebase for DRO

● Implement 12 typical DRO algorithms
○ f-DRO: CVaR-DRO, KL-DRO, TV-DRO,    -DRO
○ WDRO:  Wasserstein DRO, Augmented WDRO, Satisficing WDRO
○ Sinkhorn-DRO
○ Holistic-DRO
○ Unified (OT)-DRO

DRO Package



DRO makes a strong assumption

Hope the worst-case distribution captures real shifts

Carefully choose 
the set     

Modeling

Do well on real  
distribution shifts!     

Goal



Critical View of DRO: not better than ERM!

Liu, J., Wang, T., Cui, P., & Namkoong, H. (2023, November). On the Need for a Language Describing Distribution Shifts: Illustrations 
on Tabular Datasets. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track.

DRO does NOT show significant improvements over ERM!

Hard to choose this set of distributions P!!!

ERM

ERM



Critical View of DRO: over-pessimism of the worst-case

   -DRO: the worst-case distribution is too conservative!

Target Distributions

task: income prediction



What if we were given a set of environments that we cared about?

Hard to pick set of distributions P; can we do better?



Hard to pick set of distributions P; can we do better?

Problem Setting:

● Train: Multiple training domains
● Test: New domain

Compare to DRO setting, more information about potential shifts!   

Figure from Gulrajani, I., & Lopez-Paz, D. (2020, October). In Search of Lost Domain Generalization. In ICLR 2020.
Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain generalization. 
Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias. ICCV, 2013.



Invariant Learning

Learn an invariant 
mechanism across 

given environments

Modeling Goal

Generalize to new 
environments

Assume true invariant mechanism can be 
learned with given heterogeneous data 



Find subset of covariates X with an invariant relationship to Y across environments!   

Invariant Learning: Invariant Causal Prediction

Peters, J., Buhlmann, P., & Meinshausen, N. (2015). Causal inference using invariant prediction: identification and confidence intervals.
Figure from https://learn.saylor.org/mod/page/view.php?id=21614 

invariant predictors
Getting 
up late

Traffic 
jam

Late for 
school

Long 
queues

Heavy 
rain

Traffic 
accident

Y

https://learn.saylor.org/mod/page/view.php?id=21614


Invariant Learning: Invariant Risk Minimization

Assume existence of feature 𝚽(X) such that Y|𝚽(X) is invariant across 
environments. Then, learn this feature.

Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Paz, D. (2019). Invariant risk minimization.
Figure from https://towardsdatascience.com/on-learning-in-the-presence-of-underrepresented-groups-8937434d3c85 

Use animals 𝚽(X) for 
prediction, rather than 
backgrounds!

Task: classify between 
cows and camels



Invariant Learning

More literature

S. Chang, et al. Invariant rationalization. In ICML, 2020.
M. Koyama and S. Yamaguchi. Out-of-distribution generalization with maximal invariant predictor.
K. Ahuja, et al. Invariant risk minimization games. In ICML, 2020.
E. Rosenfeld, et al. The risks of invariant risk minimization.In ICLR, 2020.
D. Krueger, et al. Out-of-distribution generalization via risk extrapolation (rex). In ICML, 2021.
D. Mahajan, et al. Domain generalization using causal matching. In ICML, 2021.
P. Kamath, et al. Does invariant risk minimization capture invariance? In AISTATS, 2021.
B. Li, et al. Invariant information bottleneck for domain generalization. In AAAI, 2022.
H. Wang, et al. Provable domain generalization via invariant-feature subspace recovery. In ICML, 2022.
J. Fan, et al. Environment invariant linear least squares, 2023.

……



Methods and assumptions

Distributionally 
Robust Optimization

Heterogeneity

Assumptions

Pre-defined set of distributions 
near training distribution

Pre-defined set of 
environments

Worst-case distribution 
guarantees generalization

Learn true invariant 
mechanism

Invariant 
Learning

Do these assumptions work 
in practice?



Plot generated from Table 4 from Gulrajani, I., & Lopez-Paz, D. (2020, October). In Search of Lost Domain 
Generalization. In International Conference on Learning Representations.

NO! Domain generalization methods do not beat ERM!



Two existing approaches to distribution shift

1. Make modeling assumptions 

2. Scale up data and models



OpenAI’s CLIP is robust to natural distribution shifts!

+6%

+51%

+40%

+35%

+74%

Effective 
robustness

Radford, Kim, Hallacy, 
Ramesh, Goh, Agarwal, 
Sastry, Askell, Mishkin, Clark, 
Krueger, Sutskever 

Learning Transferable Visual 
Models From Natural 
Language Supervision (2021)



CLIP: scale up data

Supervised ImageNet training data CLIP training data

● ~1M (image, label) pairs 
● Data from one source
● Needs labelers

● ~400M (image, caption) pairs 
● Data from all over the 

internet; more diverse
● No need for labelers; there is 

lots of (image, caption) data 
across the internet 



CLIP: learn relationship between images and captions

1. Learn embeddings for images and text so that embeddings for images and text that correspond are similar, and 
embeddings for images and text that don’t are different

2. To make a zero-shot classifier: for each image embedding, find the closest class label (caption) embedding 

→ enables using a huge dataset of (image, caption) pairs



CLIP: learn relationship between images and captions

1. Learn embeddings for images and text so that embeddings for images and text that correspond are similar, and 
embeddings for images and text that don’t are different

2. To make a zero-shot classifier: for each image embedding, find the closest class label (caption) embedding 

→ enables using a huge dataset of (image, caption) pairs



Where are gains coming from? Data!
Language supervision
Training distribution
Training set size
Loss function
Test-time prompting
Model architecture



Scale up data for LLMs, too

Common Crawl The Pile Red Pajama

→ bigger, more diverse datasets → better LLMs →



Have we solved domain generalization? 



Just adding more data ≠ better

Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIP 
Thao Nguyen, Gabriel Ilharco, Mitchell Wortsman, Sewoong Oh, Ludwig Schmidt



Which training data do we use?

datacomp.ai



Sometimes you need (costly) specialized data!

internet
data

$ cheap!

medical 
data

driving 
dataexperiment

data

$$$ expensive!

Many important 
applications!

Not only in terms of dollars! E.g. time to perform an experiment



Strengths Limitations

Clear assumptions 
about distribution 
shift

Current methods do 
not consistently 
provide robustness to 
many real 
distribution shifts

Works well to 
improve robustness 
to many real 
distribution shifts

Relevant, 
application-specific 
data can be costly to 
acquire

Two existing approaches to distribution shift

1. Make modeling assumptions 

2. Scale up data and models



Strengths Limitations

Clear assumptions 
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shift
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many real 
distribution shifts

Works well to 
improve robustness 
to many real 
distribution shifts

Relevant, 
application-specific 
data can be costly to 
acquire

Two existing approaches to distribution shift

1. Make modeling assumptions 

2. Scale up data and models

Can we do better?



Can we do better?

1. Make modeling assumptions 

2. Scale up data and models

Understand the application
First understand your application and 
your data, and then make appropriate 
modeling assumptions!

Understand where you need data 
Especially when data is costly, first 
identify what data is most helpful to 
collect!

Instead, do this!Don’t just do this!



Outline

Part 1: Benchmarking performance under distribution shift

Part 2: A critical review of existing approaches

Part 3: Application-specific modeling of data heterogeneity 

Part 4: Towards heterogeneity-aware machine learning



Alarm and Proposition

● Empirically, current algorithmic robustness methods (e.g. DRO, invariant learning) do 
not improve domain generalization.

● These methods usually make assumptions about the relationship between data 
distributions, but do not check them.

● In theory, no model can generalize to arbitrarily shifted distributions.
● A more realistic goal of studying OOD generalization (or distribution shifts) is to deal 

with real rather than hypothetical distribution shifts.
● In response, we propose carefully understanding the real distribution shift patterns in 

each application.



Distribution shifts are complicated in real applications

● Different types
○ different X distributions

■ examples: demographic shifts, minority groups

○ different Y | X distributions
■ examples: different user preferences over time



Distribution shifts are complicated in real applications

● Different Applications
○ For image data: X-shifts are more common
○ A sample will not have different labels in training and testing, as X include 

complete information for predicting Y

Xingxuan Zhang,  et al. NICO++: Towards Better Benchmarks for Out-of-Distribution Generalization. CVPR, 2023.



Distribution shifts are complicated in real applications

● Different Applications
○ For tabular data: both X-shift and Y|X-shift exists
○ A sample may have different labels in training and testing when X can not 

provide complete information for predicting Y, due to missing variables

PHOTO: TH BALANCE / MADDY PRICE

Manhattan Pittsburgh

$3,075 $1,050

Average rent for a 1-bedroom



Heterogeneity: a language for characterizing distribution shifts

● Modeling heterogeneity is an art of pursuing the tradeoff between 
commonality and differences

X Heterogeneity Y|X Heterogeneity



Using heterogeneity to characterize distribution shifts

● Two cases
○ The shift is induced by the proportion of heterogeneity components

■ Do NOT need target distribution
■ Divide and conquer, or learning invariance from heterogeneity



Using heterogeneity to characterize distribution shifts

● Two cases
○ The shift is induced by the proportion of heterogeneity components
○ The shift goes beyond the heterogeneity identified in training 

distribution
■ Need the target distribution
■ Diagnose the shift region, and collect more data or features 

accordingly



A different philosophy

● Application specific v.s. One model fits all (Model-centric View)
○ Given an application, first understand its real distribution shift pattern 

characterized by heterogeneity, and then derive realistic assumptions 
accordingly for the subsequent modeling process

● Less is more v.s. The more the better (Data-centric view)
○ Distribution shift problem can be regarded as a problem of data 

representativeness w.r.t. X or Y|X which CANNOT be solved by 
collecting MORE data, but need to collect the RIGHT data.



Outline

Part 1: Benchmarking performance under distribution shift

Part 2: A critical review of existing approaches

Part 3: Application-specific modeling of data heterogeneity 

Part 4: Towards heterogeneity-aware machine learning



● Algorithms don’t exhibit consistent rankings over different shifts
● Algos sensitive to configurations: rankings vary across 7 different settings

One size fits all



Understanding heterogeneity throughout the modeling process

Data Collection Model Training

Model EvaluationDeployment

We discuss how understanding heterogeneity can be 
important throughout the modeling process



● Data is the infrastructure that all AI models build on
○ Big set up cost

● What are the main resource constraints?
○ Time, money, human & social capital

● Inclusion-exclusion criteria: Who in the data? Who’s not in the data? 
○ Data depends on the social conditions under which it’s collected
○ See CVPR 2020 tutorial by Timnit Gebru and Emily Denton

● Cross-pollination needed with best practices experimental design
○ Long line of work on a thoughtful design process for experiments
○ For example, see Beth Tipton’s 2020 OCI talk

● Rigorous documentation: Datasheets (Gebru et al. 2018, Mitchell et al. 2019)

Perspective 0: Data as infrastructure

https://aihub.org/2020/07/14/tutorial-on-fairness-accountability-transparency-and-ethics-in-computer-vision/
https://drive.google.com/file/d/1cmoOOn1yNBmgM1eMIOKrM-O9GaZnaOoD/view


Understanding heterogeneity throughout the modeling process

Data Collection Model Training

Model EvaluationDeployment

Understand heterogeneity before 
making modeling assumptions



Perspective 1: It’s important to understand if your data has 
heterogeneous subpopulations

 Does the training data contain sub-populations 
with different Y|X ?

After collecting data, we need to know

Then we might want to model them separately!

In contrast, invariance methods assume the same X→Y across 
the entire population. This assumption can be inappropriate.  



 mutual information with 
model constraints 

Example: discover heterogeneous subpopulations: 
predictive heterogeneity

Definition

Xu, Y., Zhao, S., Song, J., Stewart, R., & Ermon, S. (2019, September). A Theory of Usable Information under Computational Constraints. In International Conference on Learning Representations.
Liu, J., Wu, J., Pi, R., Xu, R., Zhang, X., Li, B., & Cui, P. (2022, September). Measure the Predictive Heterogeneity. In The Eleventh International Conference on Learning Representations.

optimization 
algorithm

finite sample 
bounds

Divide the dataset into subpopulations with different Y|X 
by maximizing additional usable information gain



Example: predictive heterogeneity

Application in Agriculture

learned sub-populations correspond to different crop types; 
model separately!

Task: predict crop yields 
from climate features

true division of two crop types
(rice vs wheat)

learned two sub-populations probability of 
crop type / 

sub-population



Example: predictive heterogeneity

Application in COVID-19

learned sub-populations correspond to different causes of death

Group 0: SPO2 Diabetes Renal Neurologic 

Group 1: Diabetes SPO2 Neurologic Cardiovascular

Group 2: Fever Cough Renal Vomiting/Diarrhea

Top 4 Features:

   ERM:   SPO2 Renal Neurologic Diabetes

Task: predict mortality from 
symptom and underlying disease

for people with COVID-19

Serious covid symptoms!

Age distributions of learned sub-populations



Discovering heterogeneous subpopulations: where to go next?

● Limitations of this method: need more efficient ways to discover 
heterogeneous subpopulations
○ Scale up to larger tasks and models

● Next goal: Understanding heterogeneous subpopulations
○ Why do subpopulations have the Y|X shifts that they have?

■ E.g .unobserved confounders, different generating process
■ How do these causes affect how we should model them?



Understanding heterogeneity throughout the modeling process

Data Collection Model Training

Model EvaluationDeployment

Understand important subsets 
of training data



Perspective 2: it’s important to understand where a model 
performs poorly

On what training data does the model perform POORLY?

After training a model, we need to know

● do efficient data re-collection
● do model patching/re-training
● not use the model on certain regions

If we understand this, we can



Example: Slice Discovery in Training Distribution

Figure from Eyuboglu, S.,et al. http://ai.stanford.edu/blog/domino/ 

http://ai.stanford.edu/blog/domino/


Example: Slice Discovery in Training Distribution

More literature on cross-modal diagnosis

Eyuboglu, S.,et al. Domino: Discovering Systematic Errors with Cross-Modal Embeddings. In ICLR Gao, I., et al. 
Adaptive testing of computer vision models. In ICCV.
Metzen, J. H., et al. Identification of Systematic Errors of Image Classifiers on Rare Subgroups. 
Jain, S., et al. Distilling model failures as directions in latent space. 
Wiles, O., et al. Discovering Bugs in Vision Models using Off-the-shelf Image Generation and Captioning. In 
NeurIPS ML Safety Workshop.
Mozannar, H.,  et al. Effective Human-AI Teams via Learned Natural Language Rules and Onboarding. In NeurIPS



Understanding heterogeneity throughout the modeling process

Data Collection Model Training

Model EvaluationDeployment
Understand where 

and why model fails 
to generalize



Perspective 3: it’s important to understand why your model performs 
poorly across a distribution shift

Different interventions for different shifts!
1.Algorithm #1: domain adaptation
2.Algorithm #2: DRO
3.Algorithm #3: invariant learning
4.…
5.Collect more data from target
6.Collect more features

These make modeling 
assumptions. Do they apply?}

Understand distribution shift 
to determine next steps!

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011

Train Target
P Q

e.g. deployment



Attribute change in performance to distribution shifts

X shifts Y | X shifts

changes in sampling, 
population shifts, 
subpopulations

changes in labeling or 
mechanism, poorly chosen X

● Real distribution shifts involve a combination of both shifts
● Attribute change in model performance to shifts: not all shifts matter

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



density
of X Px Qx

X=age

expected
loss given X

EQ[L|X]

EP[L|X]

L is loss

L: loss
P: train 
Q: target

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



density
of X Px Qx

X=age

expected
loss given X

EQ[L|X]

EP[L|X]

You can only 
compare Y | X 
on shared X

EP[L|X] not 
well-defined 

EQ[L|X] not
well-defined

L is loss

L: loss
P: train 
Q: target

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Define Shared Distribution

density
of X Px Qx

Sx

density
of X

X=age

X=age

L: loss
P: train 
Q: target
S: shared

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Attribute change in performance to distribution shifts

EP[EP[L|X]] EQ[EQ[L|X]]

L: loss
P: train 
Q: target
S: shared

Performance on the 
training distribution

Performance on the 
target distribution

Decompose into X-shift vs. Y|X-shift

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Attribute change in performance to distribution shifts

EP[EP[L|X]] ES[EP[L|X]]

ES[EQ[L|X]] EQ[EQ[L|X]]EP[EQ[L|X]]

EQ[EP[L|X]]

L: loss
P: train 
Q: target
S: shared

Diagnosis:

S has more X’s that are 
harder to predict than P

Potential interventions:

Use domain adaptation, e.g. 
importance weighting

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Attribute change in performance to distribution shifts

EP[EP[L|X]] ES[EP[L|X]]

ES[EQ[L|X]] EQ[EQ[L|X]]EP[EQ[L|X]]

EQ[EP[L|X]]Diagnosis:

Y | X moves farther from 
predicted model

Potential interventions:

Re-collect data 
or modify covariates

L: loss
P: train 
Q: target
S: shared

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Attribute change in performance to distribution shifts

EP[EP[L|X]] ES[EP[L|X]]

ES[EQ[L|X]] EQ[EQ[L|X]]EP[EQ[L|X]]

EQ[EP[L|X]]

Diagnosis:

Q has “new” X’s that are 
harder to predict than S

Potential interventions:

Collect + label more data 
on “new” examples

L: loss
P: train 
Q: target
S: shared

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Attribute change in performance to distribution shifts

EP[EP[L|X]] ES[EP[L|X]]

ES[EQ[L|X]] EQ[EQ[L|X]]EP[EQ[L|X]]

EQ[EP[L|X]]

L: loss
P: train 
Q: target
S: shared

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Employment prediction case study

[X shift]  P: only age ≤25,  Q: general population

Performance attributed to X shift 
(S      Q), meaning “new examples” 
such as older people

L: loss
P: train 
Q: target
S: shared

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Employment prediction case study

[X shift]  P: age ≤25 overrepresented, Q: evenly-sampled population

Substantial portion attributed to 
X shift (P        S), suggesting 
domain adaptation may be 
effective

L: loss
P: train 
Q: target
S: shared

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Employment prediction case study

[Y|X shift]  P: West Virginia, Q: Maryland

WV model does not use 
education.

Y | X shift because of missing 
covariate: education affects 
employment

L: loss
P: train 
Q: target
S: shared

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Recap

● Diagnostic for understanding why performance dropped, in terms of X vs Y|X shift
● Diagnostic can be used to help decide on modeling assumptions + data collection

Where to go next?
● Limitations of this diagnostic

○ Shared space not easy to understand / interpret in high dimensions
● Lots of unanswered questions! 

○ We’re only diagnosing between X vs Y|X shift! This is a bare minimum. 
○ In practical settings, need more fine-grained actionable insights

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



For reference: other diagnostic tools

Haoran Zhang, Harvineet Singh, Marzyeh Ghassemi, Shalmali Joshi. "Why did the Model Fail?": Attributing Model 
Performance Changes to Distribution Shifts (2022)

Xingxuan Zhang, Yue He, Renzhe Xu, Han Yu, Zheyan Shen, Peng Cui. NICO++: Towards Better Benchmarking for 
Domain Generalization (2022)

Adarsh Subbaswamy, Roy Adams, Suchi Saria. Evaluating Model Robustness and Stability to Dataset Shift (2021)

Finale Doshi-Velez, Been Kim. Towards A Rigorous Science of Interpretable Machine Learning (2017)



Perspective 4: it’s important to understand where you have Y|X 
shifts

Where does the model performance drop 
because of Y|X shift? 

When model performance drops after deployment, we need to know

If we understand this, then we can collect 
data better. 



Example: Identify Regions with Y|X-Shifts

1. Construct shared distribution from training and target
2. Model Y separately on each of training and target:     , 
3. Model difference in Y between train and target                          on shared distribution

using interpretable tree-based model

How to Better Understand Y|X-Shifts? Find Covariate Regions with 
Strong Y|X-Shifts!

Liu, J., Wang, T., Cui, P., & Namkoong, H. (2023, November). On the Need for a Language Describing Distribution Shifts: Illustrations on 
Tabular Datasets. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track.



Tool 4: Identify Regions with Y|X-Shifts

Tabular Data

Figure from Liu, J., Wang, T., Cui, P., & Namkoong, H. (2023, November). On the Need for a Language Describing Distribution Shifts: 
Illustrations on Tabular Datasets. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track.

Task: Income Prediction 
Shift: CA -> PR

Y|X shift region consists of 
occupations that require language

Official languages are different in 
CA and PR!



Tool 4: Identify Regions with Y|X-Shifts

Figure from Liu, J., Wang, T., Cui, P., & Namkoong, H. (2023, November). On the Need for a Language Describing Distribution Shifts: 
Illustrations on Tabular Datasets. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track.

Task: Income Prediction 
Shift: CA -> PR

Good data may be more effective!

collecting better features collecting better target data

Include language features when training 
on CA → better performance in PR

No language features With language features



Recap

● Heterogeneity is really important! 
● Two existing approaches to domain generalization

○ Make modeling assumptions: principled, but do the assumptions hold?
○ Scaling up data: effective for internet-scale data, but for many problems data is costly

● Heterogeneity-aware approach: 
○ Develop and use tools to understand heterogeneity in your setting. 
○ Then, use this understanding throughout the entire modeling process. 



Future directions

● We need a system-level view; “industrial engineering” for AI
○ Design better workflows

Develop tools to 
model data 

heterogeneity

Data Collection Model Training

Model EvaluationDeployment



Future directions

● We must build models that know what it doesn’t know
● Recognize unforeseen heterogeneity at test time
● Connections to uncertainty quantification

○ Bayesian ML, conformal prediction etc
○ Requires explicitly modeling unobserved factors



Future directions

● Based on this uncertainty, agents must decide how to actively collect data to 
reduce this uncertainty

● Connections to reinforcement learning and active learning



Future directions

● We need a system-level view; “industrial engineering” for AI
○ Design better workflows

● We must build models that know what it doesn’t know
○ We only collect outcomes on actions (observations) we take (measure)

● Based on this uncertainty, agents must decide how to actively collect data to 
reduce this uncertainty

● Overall, exciting research space with many open problems!



Contact

cuip@tsinghua.edu.cn namkoong@gsb.columbia.edu liujiashuo77@gmail.com tiffany.cai@columbia.edu 

tutorial website

mailto:cuip@tsinghua.edu.cn
mailto:namkoong@gsb.columbia.edu
mailto:liujiashuo77@gmail.com
mailto:tiffany.cai@columbia.edu


Many thanks to

Tianyu Wang
Columbia 
University

tw2837@columbia.edu 

Jiayun Wu
Tsinghua 

University
jiayun.wu.work@gmail.com 

Zimu Wang
Tsinghua 

University
14317593@qq.com 

Steve Yadlowsky
Google Deepmind

mailto:tw2837@columbia.edu
mailto:jiayun.wu.work@gmail.com
mailto:14317593@qq.com


Welcome our Panelists!


