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Thoughtful use of Al 1s challenging

AD’s main value proposition: omni-present feedback generation
through codification of patterns

e Recent advances are truly exciting, e.g., natural language interface to computing

through LLMs
e Salient challenges remain for their reliable deployment and use
e Main value prop is also its main shortcoming: difficult to assess when said automated

predictions and feedback are trustworthy



Some failures are not hard to spot



https://docs.google.com/file/d/10pSIYpGH8A6lMnIf1zJ5cWFDoO9EGxGA/preview

Some failures are not hard to spot

e C(Correlation is no substitute for causal evidence
e (COVID prediction Als were found to be “picking up on the text font that certain

hospitals used to label the scans.”
e “As aresult, fonts from hospitals with more serious caseloads became predictors of

covid risk.”

Hundreds of Al tools have been built to catch
covid. None of them helped.

Some have been used in hospitals, despite not being properly tested. But the
pandemic could help make medical Al better.

By Will Douglas Heaven July 30,2021




Some failures are not hard to spot

Owner: “Car kept jamming on the
brakes thinking this was a person”



Some are not so easy

Federal Government Opens Safety
Defect Investigation Into Tesla Autopilot

Crashes

NHTSA is looking at whether the technology may be a contributing factor in
multiple crashes with emergency vehicles

By Keith Barry

Published August 16, 2021 | Updated September 1, 2021


https://docs.google.com/file/d/10oU1JnPjAvib-HS8ZdFy-pX-oVcFcfuY/preview

Some are not so easy

Al Camera Ruins Soccer Game For Fans After Mistaking
Referee's Bald Head For Ball




Some are not so easy

Kannada: Google apologises for
‘ugliest Indian language' search
result mE@E oo

Q.  ugliest language in india U

All Videos Images News Shopping

Kannada

What is the ugliest language in India? The answer is
Kannada, a language spoken by around 40 million
people in south India.



System level of view of Al

e Building a reliable Al stack requires a holistic view

o o mm n s o n mm s o n mm s mm s oy

[ ——o]

= : Data Collection : >i Model Training :
Deployment < Model Evaluation i/

e Since rigorous benchmarking is the foundation of empirical progress, we begin with how we
can evaluate the robustness of AI models



Outline

Part 1: Benchmarking performance under distribution shift
Part 2: A critical review of existing approaches
Part 3: Application-specific modeling of data heterogeneity

Part 4: Towards heterogeneity-aware machine learning



History

e Lots of research on distribution shifts and robustness in causal inference, operations
research, economics, control theory, and statistics

e ML researchers like Masashi Sugiyama and Kate Saenko studied particular types of
distribution shift in ‘00s, and a wave of algorithmic papers followed in 10s

e Most recently, exciting developments in benchmarking model robustness

o  Rigorous benchmarking is the foundation of empirical progress



ImageNet

Large image classification dataset: 1.2 mio training images, 1,000 image classes.

» Golden retriever

» Great white shark
» Minibus

Slide credit: Ludwig Schmidt



ImageNet

e Drove the bulk of empirical progress in Al for multiple years from 2010

ILSVRC top-5 Error on ImageNet
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Slide credit: Ludwig Schmidt

Robustness on ImageNet

Lots of progress on ImageNet over the past 10 years, but models are still not robust.

Evaluation: new test sets
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Slide credit: Ludwig Schmidt
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Slide credit: Ludwig Schmidt
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Benchmarking distribution shifts

Domain generalization
Train (mixture of domains) Test (unseen domains)

x=<uj‘ \Q

$e b X,
A I o x= QX
L —| H - o
A N - Sl !
y = active y = inactive y = active y = inactive
d = scaffold 1 d = scaffold d = scaffold d = scaffold
44,930 44,931 90,124

drawn from P, drawn from /. 44030 drawn from FPicag931  drawn from P..gpi24

A benchmark of in-the-wild distribution shifts spanning diverse data modalities and

average precision = 27.2% o . o o T .
applications, from tumor identification to wildlife monitoring to poverty mapping.

Subpopulation shift

Train (mixture of domains) Test (Americas) Test (Africa)

https://wilds.stanford.edu/

y = mall

d=Americas

d = Africa

drawn from P, ericas  drawn from Pgic,

y = rec facility
d=Americas

drawn from P;mericas

_ accuracy = 55.3%

y = school
d = Africa

drawn from Fqica

accuracy = 32.8%

Y
worst-region accuracy = 32.8%



X-shifts vs. Y| X-shifts



X-shifts vs. Y| X-shifts

e So far: Humans are robust on all distributions. Can we get a universally good model?
e Implicitly, this view focuses on covariate shift (X-shift)

o  Traditional focus of ML
e On the other hand, we expect Y|X-shifts when there are unobserved factors

o  Traditional focus of causal inference

e For Y| X-shifts, we don’t expect a single model to perform well across distributions
e Requires application-specific understanding of distributional differences



Even tabular benchmarks mainly focus on X-shifts

e Look at loss ratio of deployed model vs. best model for target
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Existing tabular benchmarks mainly focus on X-shifts

e Look at loss ratio of deployed model vs. best model for target

Eq[L(Y, fr(X))] . relative
minser E[U(Y, f(X))] 1, where fp € ar)g;em}_ln]Ep[E(Y, f(X))] regret
- Existing datasets WHYSHIFT

Relative Regret

]
I
|
|
|
|
|
1
50% - | .
1
F]’W - il N
1
0% - T , = | === |

Adult BRFSS COMPAS ACS Pub. ACS Inc. ACS Inc. ACS Pub. ACS Pub. ACS Mob. Taxi US Acci.  ACS Inc.
(sex & race) (sex & race) (sex & race) (sex & race) (sex & race)(Young—0l1d)(2010-+2017) (NE-LA) (MS—-HI) (NYC-»BOG) (CA-+OR) (CA—PR)

Liu, Wang, Cui, Namkoong, On the Need for a Language Describing Distribution Shifts: lllustrations on Tabular Datasets



arxiv github
% ool whyshift0.1.3
. H .
VV hyShlft = 1: % pip install whyshift @

® 7 spatiotemporal and demographic shifts from 5 tabular datasets

Dataset Selected Settings Shift Patterns
ACS Income California — Puerto Rico |Y|X > X
ACS Mobility Mississippi — Hawaii YIX>X
Taxi New York City— Botogd |Y|X > X
ACS Pub.Cov Nebraska — Louisiana YIX >X
US Accident California— Oregon YIX>X
ACS Pub.Cov 2010 (NY)— 2017 (NY) |V|X < X
ACS Income Younger— Older Y X <X

e Out of 169 source-target pairs with significant performance degradation, 80% of them
are primarily attributed to Y|X-shifts.

https://github.com/namkoong-lab/whyshift


https://github.com/namkoong-lab/whyshift

Y| X-shifts

We can’t just compare models based on their out-of-distribution performance
It may not be feasible to simultaneously perform well across source and target
We need to build an understanding of why the distribution changed!
Previously observed empirical trends break 1f we look at Y| X-shifts



Accuracy-on-the-line doesn’t hold under strong Y]|X-shifts

e Source and target performances correlated only when X-shifts dominate
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Accuracy on the line: on the strong correlation between out-of-distribution and in-distribution generalization.



https://github.com/namkoong-lab/whyshift

Accuracy-on-the-line doesn’t hold under strong ¥Y|X-shifts

Out-of-distribution accuracy

ImageNetV2 accuracy

e Source and target performances correlated only when X-shifts dominate
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Accuracy on the line: on the strong correlation between out-of-distribution and in-distribution generalization.
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https://github.com/namkoong-lab/whyshift

Modeling: an application-driven perspective

e Measuring, understanding, and mitigating failures is nuanced
e “Modeling research” refers to building a simplified caricature of the real-world
problem that we can analyze and understand

o Not to be confused with “modeling” in the tech world

e Tremendous domain expertise is required to arrive at a concrete formulation
o  Often referred to as “institutional knowledge”

e (Considered a first-order problem in disciplines like Economics, Operations Research,
and Statistics. AI/ML community has long neglected this dimension.



BEM 2. Bacteria
enter blood

Example: EPIC’s sepsis risk scores N i
e More than 5 of deaths in US hospitals due to sepsis DEATH g I h
e Epic Sepsis Model widely deployed as an early warning ' '

systems for sepsis in hundreds of US hospitals
e Developed based on data from 400K patients across 3 health systems from 2013-15
e Recent external validation found the model’s performance to be substantially lower

than vendor claims
o  Failed to identify 93% sepsis patients who did not receive timely administration of antibiotics
o  Also did not identify 67% of sepsis patients despite creating a large burden of alert fatigue

Wong et al., External Validation of a Widely Implemented Proprietary Sepsis Prediction Model in Hospitalized Patients, JAMA, 2021



Example: EPIC’s sepsis risk scores

e It’s common for risk scores developed on data from a particular region (North
Carolina) to not generalize to other regions (New York)
e We need to better understand the level of heterogeneity that exists in data
o  How different are the patients from the two regions?
e How do we catch these failure modes?
o  More rigorous evaluation protocols
e How do we diagnose the cause of this failure?
o Differences in age? Differences in latent factors? (e.g., genetics)
e Which interventions do we take to mitigate such failures?

o  Need better data collection mechanisms and algorithms
o  Resource constraints must be more explicitly modeled



Modeling data heterogeneity

ML models are based on heterogeneous data sources

e multiple environments
o different Y|X distributions

< . .
Training Target e different data size
Data Data

Today: opportunities and challenges of heterogeneity




Data Heterogeneity Matters

Ignoring heterogeneity makes models ignore underrepresented groups

Train

Focus

Amazon scraps secret Al recruiting tool that
AP showed bias against women : :reuters




Data Heterogeneity Matters

Ignoring heterogeneity makes ML algorithms fail to generalize

Self-Driving

Owner: “Car kept jamming on the
common Scencs brakes thinking this was a person”



Data Heterogeneity Matters

Ignoring heterogeneity makes ML algorithms unreliable

Health Care

Hundreds of Al tools have been built to catch
covid. None of them helped. Selection bias in data leads models
Some have been used in hospitals, despite not being properly tested. But the tO fOCllS OII Spurious COl'l'elationS

pandemic could help make medical Al better.

By Will Douglas Heaven July 30,2021




Data Heterogeneity Matters

Ignoring heterogeneity brings unreliable scientific discoveries

Distribution of log-district size in studies versus total population

National
Studies

Social Science

Even for carefully
designed randomized
trials, there is
large selection bias

Density

05-

0.0

District size (# of schools)

[Tipton et al. 2019] The convenience of large urban school districts: a study of recruitment practices in 37 randomized trials



Outline

Part 1: Benchmarking performance under distribution shift
Part 2: A critical review of existing approaches
Part 3: Application-specific modeling of data heterogeneity

Part 4: Towards heterogeneity-aware machine learning



Terminology

e “Distribution shift” refers to mismatch between training distribution P and target
distribution Q

e “Distributional robustness” refers to model performance not becoming worse even
when Q is different from P

e “Heterogeneity” refers to the diverse mixture of distributions that generated the data,
including both training and target



Two existing approaches to distribution shift

1. Make modeling assumptions

2. Scale up data and models



Two existing approaches to distribution shift

1. Make modeling assumptions

2. Scale up data and models



Distributionally Robust Optimization (DRO)

Empirical Risk inlE.,_ I 6:7
Minimization glel(g Z~P tTam[ ( )] P
DRO nun sqgg Ez.ql£(6;Z2)]

P ={0: Dist(Q, Ptrain) < p}

Instead of minimizing loss over training distribution,
minimize loss over distributions near it



Distributionally Robust Optimization (DRO)

DRO g Sup Ez-ol£(0: 2)] P

distay/ce between

. . distributions
Training

distribution
old

Consider different mixture ratios
of young and old people!




Distributionally Robust Optimization (DRO)

Empirical Risk minE.,_ 1P(0:7
Minimization e Z~P tTam[ ( ¢ )] P

distay/ce between
diptributions

DRO g Sup Ez-ol£(0: 2)]

P ={0: Dist(Q, Ptrain) < p}

1. Define set of distributions you care about
2. Minimize loss on worst distribution in this set



Examples: set of distributions we care about

recall the objective

P = {Q Dist(Q, Ptrain) < P} min sup E;_[€(6; Z)]
© gep

Oe

f-divergence: about densities f(L)

If L= ZIQ) 1s “near 17, then QO and P are near.

For a convex function,

f:R, >R with f(1) =0,

a2 ()



Examples: set of distributions we care about

P = {Q:DiSt(Q; Ptrain) = P}

f-DRO: reweight data
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recall the objective
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Examples: set of distributions we care about

P = {Q:DiSt(Q; Ptrain) = P}

f-DRO: reweight data

-

training
distribution

0
"""""
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Age=30

170%;

Age=60

0'.
“

recall the objective

min ngg Ez-ql[£(6;2)]

*
. *
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L e




Examples: set of distributions we care about

recall the objective

P ={Q: Dist(Q, Prrain) < P} mi

Oe

nsupkE, _o[€(0;Z
®Qe£ ZQ[( )]

f-DRO: reweight data

‘ono/:
4 training F % :80 /';‘._
distribution 170%
............... g RERL, 1| L VAT

Age=30 Age=60 Age=30 Age=60



Examples: set of distributions we care about

recall the objective

P ={Q: Dist(Q, Prrain) < P} mi

Oe

nsupkE, _o[€(0;Z
GQeg ZQ[( )]

Wasserstein distance: carth-mover’s distance that considers geometry
A

Q P

the minimal cost to
transport Q to P




Examples: set of distributions we care about

_ recall the objective
P ={Q: Dist(Q, Ptrain) < p}

=

Wasserstein-DRO: perturb data

training
distribution
$70%:

perturbations

30% 30%

Age=30 Age=45 Age=60

Age=30 Age=60



Examples: set of distributions we care about

recall the objective

P = {Q Dist(Q, Ptrain) =< P} min sup E;_[€(6; Z)]
© gep

Oe

Wasserstein-DRO: perturb data

training

| distribution
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Examples: set of distributions we care about

recall the objective

P = {Q Dist(Q, Ptrain) =< P} min sup E;_[€(6; Z)]
© gep

Oe

Wasserstein-DRO: perturb data

training

| distribution
$70%:

.
"
B
-------

2 o “0 AL
.-"‘ s ’." .--“‘ 3 Tsapmuunt®
30% 30%

. 20% 20%

Age=30 Age=60 Age=30  Age=45 Age=60 Age=75




Intuition: f~divergence vs Wasserstein distance

P = {Q:DiSt(Q; Ptrain) = ,0}

<

N Wasserstein distance: compare in this direction
moving samples

>

recall the objective

=

»
»

f-divergence: compare in this direction

comparing densities




DRO: set of distributions we care about: there are lots!

More Methods:

Marginal DRO: only perturbs marginal distribution

Sinkhorn DRO: adds entropy term to regularize Wasserstein distance
Geometric DRO: uses geometric Wasserstein distance

MMD DRO: uses MMD distance

Holistic DRO: uses a mixture of distances

Unified (OT) DRO: unifies Wasserstein distance and f£divergence

For more about DRO, please refer to the survey of DRO: Rahimian, H., & Mehrotra, S.
(2019). Distributionally robust optimization: A review. arXiv preprint arXiv:1908.05659.

Duchi, J., Hashimoto, T., & Namkoong, H. (2023). Distributionally robust losses for latent covariate mixtures. Operations Research, 71(2), 649-664.
Wang, J., Gao, R., & Xie, Y. (2021). Sinkhorn distributionally robust optimization. arXiv preprint arXiv:2109.11926.

Liu, J., Wu, ], Li, B., & Cui, P. (2022). Distributionally robust optimization with data geometry. In NeurIPS.

Staib, M., & Jegelka, S. (2019). Distributionally robust optimization and generalization in kernel methods. In NeurIPS.

Bennouna, A., & Van Parys, B. (2022). Holistic robust data-driven decisions. arXiv preprint arXiv:2207.09560.

Blanchet, J., Kuhn, D., Li, J., & Taskesen, B. (2023). Unifying Distributionally Robust Optimization via Optimal Transport Theory. arXiv preprint
arXiv:2308.05414.



DRO Package

An easy-to-use codebase for DRO

e Implement 12 typical DRO algorithms
o f-DRO: CVaR-DRO, KL-DRO, TV-DRO, x2DRO
WDRO: Wasserstein DRO, Augmented WDRO, Satisficing WDRO
Sinkhorn-DRO
Holistic-DRO
Unified (OT)-DRO

O O O O




DRO makes a strong assumption

minsup E;_o[£(0;Z)]
feB QeP
Modeling Goal
Carefully choose — Do well on real
the set P distribution shifts!



Critical View of DRO: not better than ERM!
ERM

G

1 f-DRO B Sinkhorn-DRO [] Unified-DRO

S [ Wass-DRO [[] Marginal-DRO I HR-DRO

<

o 80-

)

20

570 - :
&

60 - - ! ‘
XCS Income ACS Pub.Cov ACS Pub.Cov US Accident ACS Income ACS Mobility Taxi
(Young—Old) (2010—2017) (NE—LA) (CA—OR) (CA—PR) (MS—HI) (NYC—BOG)

ERM

DRO does NOT show significant improvements over ERM!

Hard to choose this set of distributions P!!!

Liu, J., Wang, T., Cui, P., & Namkoong, H. (2023, November). On the Need for a Language Describing Distribution Shifts: Illustrations
on Tabular Datasets. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track.




Critical View of DRO: over-pessimism of the worst-case

task: income prediction

ST

Target Distributions

801

Accuracy

50 1

Source Worst AZ CO FL ID IA LA MA MS NE NJ NC OK RI TN VI WV PR

Xz-DRO: the worst-case distribution is too conservative!



Hard to pick set of distributions P; can we do better?

What if we were given a set of environments that we cared about?



Hard to pick set of distributions P; can we do better?

Cartoon Photo Sketch
aalty

- M
-

Problem Setting:

® Train: Multiple training domains P}( vs P)2( Voo P)I({ v
e Test: New domain Qxy

Compare to DRO setting, more information about potential shifts!

Figure from Gulrajani, I., & Lopez-Paz, D. (2020, October). In Search of Lost Domain Generalization. In ICLR 2020.



Invariant Learning

Modeling —> Goal

Learn an invariant
mechanism across
given environments

Generalize to new
environments

Assume true invariant mechanism can be
learned with given heterogeneous data



Invariant Learning: Invariant Causal Prediction

Find subset of covariates X with an invariant relationship to Y across environments!

Traffic
accident

“¢—— invariant predictors

Late for Long
school queues

Peters, J., Buhlmann, P., & Meinshausen, N. (2015). Causal inference using invariant prediction: identification and confidence intervals.
Figure from https:/learn.saylor.org/mod/page/view.php?id=21614



https://learn.saylor.org/mod/page/view.php?id=21614

Invariant Learning: Invariant Risk Minimization

Assume existence of feature @(X) such that ¥|®(X) is invariant across
environments. Then, learn this feature.

Cow Camel

Task: classify between
cows and camels

Use animals @(X) for
prediction, rather than
backgrounds!

Arjovsky, M., Bottou, L., Gulrajani, 1., & Lopez-Paz, D. (2019). Invariant risk minimization.
Figure from https://towardsdatascience.com/on-learning-in-the-presence-of-underrepresented-groups-8937434d3c85



Invariant Learning

More literature

S. Chang, et al. Invariant rationalization. In ICML, 2020.

M. Koyama and S. Yamaguchi. Out-of-distribution generalization with maximal invariant predictor.

K. Ahuja, et al. Invariant risk minimization games. In ICML, 2020.

E. Rosenfeld, et al. The risks of invariant risk minimization.In ICLR, 2020.

D. Krueger, et al. Out-of-distribution generalization via risk extrapolation (rex). In ICML, 2021.

D. Mahajan, et al. Domain generalization using causal matching. In ICML, 2021.

P. Kamath, et al. Does invariant risk minimization capture invariance? In AISTATS, 2021.

B. Li, et al. Invariant information bottleneck for domain generalization. In AAAI, 2022.

H. Wang, et al. Provable domain generalization via invariant-feature subspace recovery. In ICML, 2022.
J. Fan, et al. Environment invariant linear least squares, 2023.




Methods and assumptions

Distributionally Invariant
Robust Optimization Learning
Het " Pre-defined set of distributions Pre-defined set of
cterogencity near training distribution environments
. Worst-case distribution Learn true invariant
Assumptions guarantees generalization mechanism

Do these assumptions work
in practice?




NO! Domain generalization methods do not beat ERM!

IN SEARCH OF LOST DOMAIN GENERALIZATION

Ishaan Gulrajani* David Lopez-Paz
Stanford University Facebook AI Research
igul222@gmail.com dlp@fb.com

Target Accuracy

CMNIST RMNIST VLCS PACS Office-home  Terralnc DomainNet

Plot generated from Table 4 from Gulrajani, 1., & Lopez-Paz, D. (2020, October). In Search of Lost Domain
Generalization. In International Conference on Learning Representations.



Two existing approaches to distribution shift

1. Make modeling assumptions

2. Scale up data and models



OpenAl’s CLIP 1s robust to natural distribution shifts!

IMAGENET
DATASET RESNET101 CLIP VIT-L
Effective
76.2% robustness
ImageNet
m% ¢ 4 A [ 64.3% 70.1% +6 %

ImageNet V2

1\ - &\
V ‘ "\:-.‘. | - E& p——
L. } ] - D i 37.7% 88.9% +51 %

ImageNet Rendition

p— +4O % Radford, Kim, Hallacy,

ObjectNet ) Ramesh, Goh, Agarwal,
Sastry, Askell, Mishkin, Clark,

ug A %j}’ : g +35 (y Krueger, Sutskever
i — g S P e on 0

25.2% 60.2% . .
ImageNet Sketch Learning Transferable Visual

= Models From Natural

7 Language Supervision (2021
ImageNet Adversarial

2.7% 77.1%



CLIP: scale up data

Supervised ImageNet training data

e ~IM (image, label) pairs
e Data from one source
® Needs labelers

CLIP training data

~400M (image, caption) pairs
Data from all over the
internet; more diverse

No need for labelers; there 1s
lots of (image, caption) data
across the internet



CLIP: learn relationship between 1images and captions

(1) Contrastive pre-training

Pepper the \’
aussie pup > ot
A } {4 -

T, | T, | T3 TN

q LTy [Ty [Ty | . |I'Ty

» b LTy | Ty | LTy | . | LTy

ioe. i > I I;'Ty | 3T, | 15T LT

Encoder 4 3Ty | 13Ty | I3 T3 | L | I3 Ty

,//

e

> Iy INTy [INTy | INT3 | .. |INTN

1. Learn embeddings for images and text so that embeddings for images and text that correspond are similar, and
embeddings for images and text that don’t are different



(1) Contrastive pre-training

(2) Create dataset classifier from label text

CLIP: learn relationship between 1images and captions

plane
Pepper the
aussie pup > ETeXt o6 w| A photo of Text
ncoder l l i l o¢ a {object}. Encoder
T, T, T3 Tn
—> I LTy | Ty | 11Ty I;' Ty .
,, (3) Use for zero-shot prediction v v y v
— L LTy [T, | I T LTy - T, | T, | Ty Ty
Image | > 1 LTy | 13T, [T I;T ‘
Encoder | 4 - 37117372 el - | 3N Image I 1Ty | 1T, (IR I,'T
Encodeer | il | s 1IN
A K o ¢
L o (1T, T [T | . (RN APhodto 22
a og.

1. Learn embeddings for images and text so that embeddings for images and text that correspond are similar, and
embeddings for images and text that don’t are different
2. To make a zero-shot classifier: for each image embedding, find the closest class label (caption) embedding

— enables using a huge dataset of (image, caption) pairs



Where are gains coming from? Data!

Data Determines Distributional Robustness
in Contrastive Language Image Pre-training (CLIP)

Alex Fang' Gabriel Ilharcof Mitchell Wortsman' Yuhao Wan'

Vaishaal Shankar® Achal Dave® Ludwig Schmidtf®

Abstract

Contrastively trained language-image models such as CLIP, ALIGN, and BASIC have demonstrated
unprecedented robustness to multiple challenging natural distribution shifts. Since these language-image
models differ from previous training approaches in several ways, an important question is what causes the
large robustness gains. We answer this question via a systematic experimental investigation. Concretely,
we study five different possible causes for the robustness gains: (i) the training set size, (ii) the training
distribution, (iii) language supervision at training time, (iv) language supervision at test time, and (v)
the contrastive loss function. Our experiments show that the more diverse training distribution is the
main cause for the robustness gains, with the other factors contributing little to no robustness. Beyond
our experimental results, we also introduce ImageNet-Captions, a version of ImageNet with original text
annotations from Flickr, to enable further controlled experiments of language-image training.

»
Training distribution
Fossfunctton

Tt :
Modetarchiteeture



Scale up data for LLMs, too

— bigger, more diverse datasets — better LLMs —

Common Crawl The Pile Red Pajama

Composition of the Pile by Category
. . net = Pros ialogue * Misc

( COMMON
CRAWL




Have we solved domain generalization?



Just adding more data # better

Quality Not Quantity: On the Interaction between
Dataset Design and Robustness of CLIP

Thao Nguyen' Gabriel Ilharco! Mitchell Wortsman'
Sewoong Oh! Ludwig Schmidt!-?
451 <31
X — Eal
5357 s 21 = Linear fit (YFCC15m)
& £ — Linear fit (LAION15m)
2357 £ 114 Linear fit (YFCC15m+LAION15m)
o k] Linear fit (YFCC7.5m+LAION7.5m)
D 154 & ®m YFCC15m
% ] # LAION1S5m
o S ® YFCC15m+LAION15m
S > YFCC7.5m+LAION7.5m
E
5 . . . . ; 1 , ; ;
25 35, 45 55 65 75 10 20 30 40
ImageNet (class-subsampled) (top-1, %) ImageNet (top-1, %)

Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIP
Thao Nguyen, Gabriel Ilharco, Mitchell Wortsman, Sewoong Oh, Ludwig Schmidt



Which training data do we use?

@ N

datacomp.ai

L
-= DataComp

Welcome to DataComp, the machine learning benchmark where
the models are fixed and the challenge is to find the best possible
datal!

DATACOMP:
In search of the next generation of multimodal datasets

Samir Yitzhak Gadre*?, Gabriel Ilharco*!, Alex Fang*', Jonathan Hayase',
Georgios Smyrnis®, Thao Nguyen', Ryan Marten”?, Mitchell Wortsman',
Dhruba Ghosh', Jieyu Zhang', Eyal Orgad®, Rahim Entezari'’, Giannis Daras®,
Sarah Pratt!, Vivek Ramanujan', Yonatan Bitton'!, Kalyani Marathe',
Stephen Mussmann', Richard Vencu®, Mehdi Cherti®®, Ranjay Krishna',
Pang Wei Koh!'!2, Olga Saukh'?, Alexander Ratner'''?, Shuran Song?,
Hannaneh Hajishirzi':”, Ali Farhadi', Romain Beaumont®,

Sewoong Oh', Alex Dimakis®, Jenia Jitsev®:®,

Yair Carmon®, Vaishaal Shankar?, Ludwig Schmidt' %"



Sometimes you need (costly) specialized data!

driving
. data
internet Many fmoortant
any importan
data applications!
medical
data
$ cheap! $$3 expensive!

Not only in terms of dollars! E.g. time to perform an experiment



Two existing approaches to distribution shift

1. Make modeling assumptions

2. Scale up data and models

Strengths

Clear assumptions

about distribution
shift

Works well to
improve robustness
to many real
distribution shifts

Limitations

Current methods do
not consistently
provide robustness to
many real
distribution shifts

Relevant,
application-specific
data can be costly to
acquire



Two existing approaches to distribution shift

1. Make modeling assumptions

2. Scale up data and models

Can we do better?

Strengths

Clear assumptions
about distribution
shift

Works well to
improve robustness
to many real
distribution shifts

Limitations

Current methods do
not consistently
provide robustness to
many real
distribution shifts

Relevant,
application-specific
data can be costly to
acquire



Can we do better?

Don’t just do this!

1. Make modeling assumptions

2. Scale up data and models

Instead, do this!

Understand the application
First understand your application and
your data, and then make appropriate
modeling assumptions!

Understand where you need data
Especially when data is costly, first
identify what data is most helpful to
collect!



Outline

Part 1: Benchmarking performance under distribution shift
Part 2: A critical review of existing approaches
Part 3: Application-specific modeling of data heterogeneity

Part 4: Towards heterogeneity-aware machine learning



Alarm and Proposition

e Empirically, current algorithmic robustness methods (e.g. DRO, invariant learning) do
not improve domain generalization.

e These methods usually make assumptions about the relationship between data
distributions, but do not check them.

e In theory, no model can generalize to arbitrarily shifted distributions.

e A more realistic goal of studying OOD generalization (or distribution shifts) 1s to deal
with real rather than hypothetical distribution shifts.

e [n response, we propose carefully understanding the real distribution shift patterns in
cach application.



Distribution shifts are complicated in real applications

e Different types
o different X distributions
m examples: demographic shifts, minority groups

o different Y| X distributions
m cxamples: different user preferences over time



Distribution shifts are complicated in real applications

e Different Applications
o For image data: X-shifts are more common
o A sample will not have different labels in training and testing, as X include
complete information for predicting ¥

dogs in water cats in grass i i 0.4
g g dogs in grass cats in water ® PACS
0.34 A ® VLCS
% ® ® DomainNet
°® )
D o8 ® Officehome
2 ® ® iWildCam
3 ® FMow
g 022 ¢ ° ® Meta-shift
8 ® NICO
0.16 e A NICO++
0.1
01 02 03 04 05 06 0.7

concept shift

Xingxuan Zhang, et al. NICO++: Towards Better Benchmarks for Out-of-Distribution Generalization. CVPR, 2023.



Distribution shifts are complicated in real applications

e Different Applications
o For tabular data: both X-shift and Y|X-shift exists
o A sample may have different labels in training and testing when X can not
provide complete information for predicting Y, due to missing variables

e Average rent for a 1-bedroom

Manhattan Pittsburgh

i | $3,075  $1,050




Heterogeneity: a language for characterizing distribution shifts

e Modeling heterogeneity is an art of pursuing the tradeoff between
commonality and differences

P(X) of Dog category:

(a) The average of features. (b) The feature coefficients.

Figure 2: Results on the Adults data. Here we
show the average of features and the feature co-
efficients of the two learned sub-populations.

X Heterogeneity Y|X Heterogeneity



Using heterogeneity to characterize distribution shifts

e Two cases
o The shift is induced by the proportion of heterogeneity components
m Do NOT need target distribution
m Divide and conquer, or learning invariance from heterogeneity

Training Test

P(X) of Dog category:



Using heterogeneity to characterize distribution shifts

e Two cases
o The shift is induced by the proportion of heterogeneity components
o The shift goes beyond the heterogeneity identified in training
distribution
m Need the target distribution
m Diagnose the shift region, and collect more data or features
accordingly



A different philosophy

e Application specific v.s. One model fits all (Model-centric View)

o @Given an application, first understand its real distribution shift pattern
characterized by heterogeneity, and then derive realistic assumptions
accordingly for the subsequent modeling process

e Less is more v.s. The more the better (Data-centric view)

o Distribution shift problem can be regarded as a problem of data
representativeness w.r.t. X or Y|X which CANNOT be solved by
collecting MORE data, but need to collect the RIGHT data.



Outline

Part 1: Benchmarking performance under distribution shift
Part 2: A critical review of existing approaches
Part 3: Application-specific modeling of data heterogeneity

Part 4: Towards heterogeneity-aware machine learning



Orre—stretsab

e Algorithms don’t exhibit consistent rankings over different shifts

e Algos sensitive to configurations: rankings vary across 7 different settings
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Understanding heterogeneity throughout the modeling process

We discuss how understanding heterogeneity can be
important throughout the modeling process

B ommm o mm n mmm s o n mmm s R o s o on ommy

= r s o on e — = o a mm s

é Deployment :4 : Model Evaluation E/




Perspective 0: Data as infrastructure

e Data 1s the infrastructure that all AI models build on
o Bigsetup cost
e What are the main resource constraints?
o  Time, money, human & social capital
e Inclusion-exclusion criteria: Who in the data? Who’s not in the data?
o Data depends on the social conditions under which it’s collected
o  See CVPR 2020 tutorial by Timnit Gebru and Emily Denton
e (ross-pollination needed with best practices experimental design

o  Long line of work on a thoughtful design process for experiments
o  For example, see Beth Tipton’s 2020 OCI talk

e Rigorous documentation: Datasheets (Gebru et al. 2018, Mitchell et al. 2019)


https://aihub.org/2020/07/14/tutorial-on-fairness-accountability-transparency-and-ethics-in-computer-vision/
https://drive.google.com/file/d/1cmoOOn1yNBmgM1eMIOKrM-O9GaZnaOoD/view

Understanding heterogeneity throughout the modeling process

Understand heterogeneity before
making modeling assumptions

118
11

é Deployment :4 : Model Evaluation :

E/’




Perspective 1: It’s important to understand 1f your data has
heterogeneous subpopulations

After collecting data, we need to know

Does the training data contain sub-populations
with different Y| X ?

Then we might want to model them separately!

In contrast, invariance methods assume the same X—Y across
the entire population. This assumption can be inappropriate.



Example: discover heterogeneous subpopulations:
predictive heterogeneity

Divide the dataset into subpopulations with different Y|.X
by maximizing additional usable information gain

Definition
sup Iy (Y; X|E) = I, (Y; X) mutual information with
€is asplit model constraints
optimization finite sample
algorithm bounds

Xu, Y., Zhao, S., Song, J., Stewart, R., & Ermon, S. (2019, September). A Theory of Usable Information under Computational Constraints. In International Conference on Learning Representations.
Liu, J., Wu, J,, Pi, R, Xu, R., Zhang, X., Li, B., & Cui, P. (2022, September). Measure the Predictive Heterogeneity. In The Eleventh International Conference on Learning Representations.




Example: predictive heterogeneity

Task: predict crop yields

:
/ |
Application in Agriculture i IR EEE

true division of two crop types learned two sub-populations o i’;;bg;g ;’f
(I'iCC VS wheat) sub-population

learned sub-populations correspond to different crop types;
model separately!



Example: predictive heterogeneity

Application in COVID-19

0.07 1
0.06
0.05 1
0.04 1
0.03 1
0.02 1

0.01

0.00

Age distributions of learned sub-populations

Task: predict mortality from
symptom and underlying disease
for people with COVID-19

Top 4 Features: ~------=-=---=-=-=-------

1
1
|
I
|
\

w— Group 0
w— Group 1
w— Group 2

Group 0: SPO2 Diabetes Renal Neurologic

Group 1: Diabetes SPO2 Neurologic Cardiovascular

[ Group 2: Fever Cough Renal Vomiting/Diarrhea ]

Serious covid symptoms!

ERM: SPO2 Renal Neurologic Diabetes

20

40 60 80 100

learned sub-populations correspond to different causes of death

- - -



Discovering heterogeneous subpopulations: where to go next?

e Limitations of this method: need more efficient ways to discover
heterogeneous subpopulations
o Scale up to larger tasks and models

e Next goal: Understanding heterogeneous subpopulations
o  Why do subpopulations have the Y|.X shifts that they have?
m E.g .unobserved confounders, different generating process
m How do these causes affect how we should model them?



Understanding heterogeneity throughout the modeling process

i Data Collection : > Model Training |
EOE : Deployment §< : Model Evaluation i/

Understand important subsets
of training data




Perspective 2: 1t’s important to understand where a model
performs poorly

After training a model, we need to know

On what training data does the model perform POORLY?

If we understand this, we can

e do efficient data re-collection
e do model patching/re-training
e not use the model on certain regions



Example: Slice Discovery in Training Distribution

Labeled Dataset

Discovered Slices

define. A slice discovery method is an
algorithm that finds slicing functions, y
which split a dataset into
underperforming slices.

\_ J

Slicing Functions
\Il Accuracy: 53%

\ Slice Discovery ‘I’(l) (X.Y) W(Z)

Method (SDM)

i oy
BUCBLE-
Q = = O O = ~

X Y Y
Trained Classifier 6 yl(z)(X Y) -
’ @ 1 o
/ X, Y 3 1+ o
7-"2:?‘3‘. 1 0
Accuracy: 65%

Accuracy: 95%
Figure from Eyuboglu, S..et al. http:/ai.stanford.edu/blog/domino/



http://ai.stanford.edu/blog/domino/

Example: Slice Discovery in Training Distribution

More literature on cross-modal diagnosis

Eyuboglu, S.,et al. Domino: Discovering Systematic Errors with Cross-Modal Embeddings. In ICLR Gao, I., et al.
Adaptive testing of computer vision models. In ICCV.

Metzen, J. H., et al. Identification of Systematic Errors of Image Classifiers on Rare Subgroups.

Jain, S., et al. Distilling model failures as directions in latent space.

Wiles, O., et al. Discovering Bugs in Vision Models using Off-the-shelf Image Generation and Captioning. In
NeurIPS ML Safety Workshop.

Mozannar, H., et al. Effective Human-Al Teams via [earned Natural [Language Rules and Onboarding. In NeurIPS



Understanding heterogeneity throughout the modeling process

i Data Collection ! >i Model Training :@
2k) | Deployment :4 ;Model Evaluation E/

Understand where
and why model fails
to generalize




Perspective 3: it’s important to understand why your model performs

poorly across a distribution shift .
Train Targete.g. deployment

P Q
Different interventions for different shifts!
1.Algorithm #1: domain adaptation
2.Algorithm #2: DRO
3.Algorithm #3: invariant learning
4....
5.Collect more data from target

These make modeling
assumptions. Do they apply?

Understand distribution shift
to determine next steps!

6.Collect more features

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Attribute change 1n performance to distribution shifts

X shifts Y | X shifts
changes in sampling, changes in labeling or
population shifts, mechanism, poorly chosen X
subpopulations

e Real distribution shifts involve a combination of both shifts
® Attribute change in model performance to shifts: not all shifts matter

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss
A P: train

Q: target
density
of X PX (L{

A
expected 7T T - —_— T T 4_EQ[I'JX]

loss given X N~ — EP[L|X]

= >
X=age L is loss

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss

A P: train
Q: target
density
of X PX Q{ You can only
compare Y | X

® ® on shared X
\ /
A

expected 7T T - = <—EQ[L|X]

loss given X / — - T ~—_<E[LIX]
— ~ ’
= =
- ® ® » X=age L is loss
EQ[L|X] not E_[L|X] not
well-defined well-defined

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss

Define Shared Distribution atgilgnet
S: shared
A
density
of X
>X—
A =age
1 X X
density Sy (%) Px(x)qx(x)

Px(x) + qx(x)

of X S

>
X=age

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss

Attribute change in performance to distribution shifts .\

Q: target
S: shared
E,[E,[LIX]] E[E,[LIX]]
Performance on the Performance on the
training distribution target distribution
\ Y
Y

Decompose into X-shift vs. Y|X-shift

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Attribute change in performance to distribution shifts

X shift (P — 9) N
E, [E,[LIX]] » E[E,[LIX]]

Diagnosis:

S has more X’s that are
harder to predict than P

Potential interventions:

Use domain adaptation, e.g.
importance weighting

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011

L: loss
P: train
Q: target
S: shared

Shared | Target
S Q



L: loss
P: train
Q: target
S: shared

Attribute change in performance to distribution shifts

Train Shared | Target

L [P | S Q
Diagnosis: ES [ EP[L | X] ]
Y | X moves farther from :
predicted model 'Y | X shift
Potential interventions: :

Re-collect data v
or modify covariates E([E,[LIX]]

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss

Attribute change in performance to distribution shifts .\

Q: target
S: shared
Diagnosis:“ 5s R ‘;I‘rain Shared Targeé
Q has “new” X’s that are P LsQ
harder to predict than S
Potential interventions:
Collect + label more data
on “new’” examples
X shift (S — Q)
ES[EQ[LlX]] ? EQ[EQ[LlX]]

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss

Attribute change in performance to distribution shifts ¢, (e
Legend: S: shared
Y | X
X shift ; shift
—_ v
X shift (P — S)
E,[E, [LIX]) » E[E,[LIX]]
'Y | X shift
v X shift (S — Q)
E[E,[LIX]] > Eg[E[LIX]]

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Employment prediction case study

[X shift] P: only age <25, (): general population

0.9 -

Accuracy
degradation

Accuracy

=
o

B X shift (Pto S)
Bl X shift (Sto Q)

ot
n

Y|X shift
Source Target Diffe;’ence
Age<=25 General
Population

L: loss

P: train
Q: target
S: shared

Performance attributed to X shift
(S—Q), meaning “new examples’

bJ

such as older people

Shared Target

S Q

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



L: loss

P: train
Employment prediction case study Q: target
S: shared
[X shift] P: age <25 overrepresented, Q: evenly-sampled population
0.775 Substantial portion attributed to

& e 5 X shift (P — S), suggesting
€3 domain adaptation may be
0.725 S C .
g > effective
507001 B =Y )
g
0.675 -
M X shift (P to S)
0.630:1 mmm X shift (S to Q) Shared Target
Y|X shift
0.625 - | 5 Q

Source Target Difference
Oversample  General
Age<=25 Population
Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.020




Employment prediction case study

[Y|X shift] P: West Virginia, Q: Maryland

5 e .1 5 ) L SO —

&
o)
o

Accuracy
degradation

2
o
)

Accuracy

B X shift (PtoS)

0:554 :
Bl X shift (Sto Q)
Y|X shift
(.50 - -
Source (WV) Target (MD) Difference

L: loss
P: train
Q: target
S: shared

WYV model does not use
education.

Y | X shift because of missing
covariate: education affects
employment

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



Recap

e Diagnostic for understanding why performance dropped, in terms of X vs Y|X shift
e Diagnostic can be used to help decide on modeling assumptions + data collection

Where to go next?

e Limitations of this diagnostic
o Shared space not easy to understand / interpret in high dimensions

e Lots of unanswered questions!
o We’re only diagnosing between X vs Y|X shift! This is a bare minimum.
o In practical settings, need more fine-grained actionable insights

Diagnosing Model Performance Under Distribution Shift https://github.com/namkoong-lab/disde https://arxiv.org/abs/2303.02011



For reference: other diagnostic tools

Haoran Zhang, Harvineet Singh, Marzyeh Ghassemi, Shalmali Joshi. "Why did the Model Fail?": Attributing Model
Performance Changes to Distribution Shifts (2022)

Xingxuan Zhang, Yue He, Renzhe Xu, Han Yu, Zheyan Shen, Peng Cui. NICO++: Towards Better Benchmarking for
Domain Generalization (2022)

Adarsh Subbaswamy, Roy Adams, Suchi Saria. Evaluating Model Robustness and Stability to Dataset Shift (2021)

Finale Doshi-Velez, Been Kim. Towards A Rigorous Science of Interpretable Machine Learning (2017)



Perspective 4: it’s important to understand where you have Y| X
shifts

When model performance drops after deployment, we need to know

Where does the model performance drop
because of Y|X shift?

If we understand this, then we can collect
data better.



Example: Identify Regions with Y|X-Shifts

Find Covariate Regions with

_Shifts?
How to Better Understand ¥|X-Shifts? Strong Y|X-Shifts!

1. Construct shared distribution from training and target
2. Model Y separately on each of training and target: f,, f,
3. Model difference in Y between train and target | f,(z) — f,(x)| on shared distribution

using interpretable tree-based model

»

density
of X PX Q‘
* px(x)qx(x)

density Ax(x) x Px(x) + qx(x)
of X S
X

>
T

Liu, J., Wang, T., Cui, P., & Namkoong, H. (2023, November). On the Need for a Language Describing Distribution Shifts: [llustrations on
Tabular Datasets. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track.




Tool 4: Identify Regions with Y|X-Shifts

( L. \
+ Task: Income Prediction !
|
Tabular Data , Shift: CA -> PR ’.
Work Hour > 34.5 Rules
no/ \yes * Sex: female Age > 31
- * Work Hour €[34.5,49.5]
©* Edueation > College + Education > College YIX shif . . "
w6 _yes + Occupation set A : MGR, shift reg10n consists o
,.;;/ \% BUS, FIN, LGL, EDU, ENT — | . g .
occupations that require language
Occupation € A /
no / \ves . . .
& puiRecin Official languages are different in
CA and PR!
(c) Region with Y| X -shifts (XGBoost)

Figure from Liu, J., Wang, T., Cui, P., & Namkoong, H. (2023, November). On the Need for a Language Describing Distribution Shifts:
Hlustrations on Tabular Datasets. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track.




Tool 4: Identify Regions with Y|X-Shifts

Good data may be more effective!

Include language features when training
on CA — better performance in PR

— o e e e e e o e e e

No language features With language features - Original Setting W@ Add Region Data
81.7 81.8 2 8 ]
. E l s Add Target Data
S = — Q
7.8 <g %
o £3 5
g 5 Z
5 e . I
: 3 I h | I
2 — & i
Y| X shift Y|X shift
BN X shift(P) EEE X shift(P) 701
BN X shift(Q) BN X shift(Q)
CA PR Difference CA PR Difference nghtGBM XGBOOSt

collecting better features collecting better target data

Figure from Liu, J., Wang, T., Cui, P., & Namkoong, H. (2023, November). On the Need for a Language Describing Distribution Shifts:
Ilustrations on Tabular Datasets. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track.




Recap

e Heterogeneity is really important!
e Two existing approaches to domain generalization

o Make modeling assumptions: principled, but do the assumptions hold?
o  Scaling up data: effective for internet-scale data, but for many problems data is costly
e Heterogeneity-aware approach:

o  Develop and use tools to understand heterogeneity in your setting.
o Then, use this understanding throughout the entire modeling process.



Future directions

e We need a system-level view;
o Design better workflows
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Future directions

e We must build models that know what it doesn’t know
e Recognize unforeseen heterogeneity at test time
e Connections to uncertainty quantification

o Bayesian ML, conformal prediction etc

o Requires explicitly modeling unobserved factors



Future directions

e Based on this uncertainty, agents must decide how to actively collect data to
reduce this uncertainty
e (Connections to reinforcement learning and active learning
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Future directions

e We need a system-level view; “industrial engineering” for Al
o Design better workflows
e We must build models that know what it doesn’t know
o We only collect outcomes on actions (observations) we take (measure)
e Based on this uncertainty, agents must decide how to actively collect data to
reduce this uncertainty
e Overall, exciting research space with many open problems!
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