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Confidence bounds → Upper Confidence Bound (UCB) algorithms for bandits.
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Stochastic Linear Bandits

action a

re
wa

rd
 r

(a) *

At round t, query any action at ∈ At, receive a noisy reward rt = ϕ(at)
⊤θ∗ + ϵt.

Goal: Maximise total reward/minimise cumulative regret.

Assumptions: ϵ1, ϵ2, . . . are (conditionally) σ-sub-Gaussian and ∥θ∗∥2 ≤ B.

θ∗ ∈ Rd is unknown, ϕ is known and upper bounds on σ and B are known.
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UCB Algorithms for Stochastic Linear Bandits (e.g. OFUL1)

action a

re
wa

rd
 r

LinUCB:

For t = 0, 1, 2, . . .

• Use {(ak, rk)}tk=1 to construct a confidence set

Θt and the corresponding upper confidence

bound

UCBΘt (a) := max
θ∈Θt

{ϕ(a)⊤θ}

• Play at+1 = argmaxa∈At+1
{UCBΘt (a)}

• Observe reward rt+1 = ϕ(at+1)⊤θ∗ + ϵt+1

1
Y. Abbasi-Yadkori et al. (2011) Improved algorithms for linear stochastic bandits. NeurIPS
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In This Work

• New confidence sets Θt for stochastic linear bandits using a new tail bound

for martingale mixtures

• Provably tighter upper/lower confidence bounds than previous

state-of-the-art (OFUL)

• LinUCB with our tighter confidence bounds leads to improved performance

in hyperparameter tuning problems

• LinUCB with our confidence sets has an O(d
√
T ln(T )) worst-case

cumulative regret bound (like OFUL)
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Baseline Tail Bound

General Plan. Derive a data-dependent constraint for θ∗ using tail bounds for non-i.i.d. data.

We want a bound on the sum of squared errors

∥Φtθ
∗ − rt∥22 =

t∑
k=1

(ϕ(ak)
⊤θ∗ − rk)

2 =

t∑
k=1

ϵ2k.

Baseline tail bound. Use the σ-sub-Gaussian property of ϵk: with probability ≥ 1− δ

∀t ≥ 1 : ∥Φtθ
∗ − rt∥22 ≤ σ2t+ 2σ2

√
t ln

(
t2π2

6δ

)
+ 2σ2 ln

(
t2π2

6δ

)
.
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Martingale Mixture Tail Bound for Linear Bandits

Choose a sequence of incrementally updated mean vectors µ1,µ2, . . . and covariance matrices T 1,T 2, . . .

µt =
[

— µt−1 — µt

]⊤
, T t =


T1

T t−1

...

Tt−1

T1 · · · Tt−1 Tt

 .

µt and T1, . . . , Tt can depend on the previous data a1, r1, . . . , at−1, rt−1, at.

Standard choice. µt = 0, T t = ΦtΦ⊤
t = (ϕ(ai)

⊤ϕ(aj))1≤i,j≤t.

Martingale mixture tail bound. With probability ≥ 1− δ, for all t ≥ 1

∥Φtθ
∗ − rt∥22 ≤ (µt − rt)

⊤
(
I +

T t

σ2

)−1

(µt − rt) + σ2 ln

(
det

(
I +

T t

σ2

))
+ 2σ2 ln(1/δ) =: R2

MM,t.
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Our Tail Bound Against The Baseline Tail Bound
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Confidence Sets For Linear Bandits

θ∗

θ1

θ2

Using our martingale mixture tail bound, we have

∥Φtθ
∗ − rt∥2 ≤ RMM,t,

This means that θ∗ lies within the set

{θ ∈ Rd : ∥Φtθ − rt∥2 ≤ RMM,t}.

Incorporating the smoothness assumption, we obtain

Θt = {θ ∈ Rd : ∥Φtθ − rt∥2 ≤ RMM,t, ∥θ∥2 ≤ B}.
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Convex Martingale Mixture UCB Algorithm

θ1

θ2

ϕ(a)

θ∗

θUCB

To run LinUCB with our confidence sets, we need to

maximise UCBΘt (a) w.r.t. a, where

UCBΘt (a) = max
θ∈Rd

ϕ(a)⊤θ

s.t. ∥Φtθ − rt∥2 ≤ RMM,t

and ∥θ∥2 ≤ B

= ϕ(a)⊤θUCB.

For continuous action sets, we approximately maximise

UCBΘt (a) w.r.t a using gradient-based methods.

We calculate UCBΘt (a) and∇aUCBΘt (a) numerically

using differentiable convex optimisation (cvxpylayers)2.
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2A. Agrawal et al. (2019) Differentiable convex optimization layers. NeurIPS
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Tighter Confidence Bounds
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Hyperparameter Tuning

Raisin Maternal Banknotes

Mean Acc Max Acc Mean Acc Max Acc Mean Acc Max Acc

CMM-UCB (Ours) 0.818 ± 0.018 0.893 ± 0.019 0.744 ± 0.020 0.829 ± 0.023 0.954 ± 0.005 1.000 ± 0.000

AMM-UCB (Ours) 0.800 ± 0.017 0.892 ± 0.020 0.736 ± 0.020 0.829 ± 0.023 0.948 ± 0.005 1.000 ± 0.000

OFUL 0.764 ± 0.019 0.891 ± 0.019 0.722 ± 0.019 0.827 ± 0.022 0.929 ± 0.006 1.000 ± 0.000

IDS3 0.706 ± 0.048 0.891 ± 0.020 0.714 ± 0.019 0.827 ± 0.024 0.926 ± 0.007 1.000 ± 0.000

Freq-TS4 0.527 ± 0.022 0.884 ± 0.019 0.616 ± 0.018 0.823 ± 0.022 0.808 ± 0.012 1.000 ± 0.000
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Banknotes

3
J. Kirschner and A. Krause. (2018) Information directed sampling and bandits with heteroscedastic noise, COLT

4
S. Agrawal and N. Goyal. (2013) Thompson sampling for contextual bandits with linear payoffs, ICML
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Regret Analysis

Step 1. Cumulative regret is bounded by the confidence bound widths (UCB minus LCB).

T∑
t=1

ϕ(a∗t )
⊤θ∗ − ϕ(at)

⊤θ∗ ≤
T∑

t=1

UCBΘt−1
(a∗t )− LCBΘt−1

(at) ≤
T∑

t=1

UCBΘt−1
(at)− LCBΘt−1

(at).

Step 2. Via weak duality for the convex program maxθ∈Θt{ϕ(a)⊤θ}, we obtain

T∑
t=1

UCBΘt−1
(at)− LCBΘt−1

(at) ≤
T∑

t=1

2RAMM,t−1

√
ϕ(at)⊤

(
Φ⊤

t−1Φt−1 + αI
)−1

ϕ(at).

Step 3. Separately upper bound RAMM,T−1 and
∑T

t=1

√
ϕ(at)⊤

(
Φ⊤

t−1Φt−1 + αI
)−1

ϕ(at), to obtain

T∑
t=1

ϕ(a∗t )
⊤θ∗ − ϕ(at)

⊤θ∗ ≤ O(d
√
T ln(T )).
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