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1. Introduction
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Figure 1. Various adaptation methods have been proposed to enhance the performance of pre-
trained vision-language models in specific domains.
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1. Introduction
Test samples in real-world applications often

differ from the data used during pre-training and adaptation.

Model robustness is essential.
VQA during adaptation VQA on test sample

What is this animal? What is this animal?

Source: https://www.pinterest.com/

Source: https://www.pinterest.com/
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1. Introduction D0
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A couple of cats sitting on top Two dogs looking at themselves A couple of cats standing next

A cat looking at his reflection in
the mirror. \\ of a bathtub. in a mirror. to each other /l
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| Typos Random Char Insertion Drop Nouns :
What is the cat starring at? : What s rhe cat 8tarring a7? What iss tche cat starridng at? ~ What is the [UNK ] starring at? |
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Figure 2. Multimodal adaptation methods are sensitive to image and text corruptions.
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Figure 2. Multimodal adaptation methods are sensitive to image and text corruptions.

We want to know
* Which adaptation performs better on which tasks, w.r.t robustness and performance.
* Whether these methods are robust against multimodal corruptions.
 Whether more examples or more trainable parameters assure better robustness
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2. Corruption Methods = o]
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Some examples of image and text corruption

Contrast Elastic Pixelate
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2. Corruption Methods

Some examples of image and text corruption

Contrast Elastic Pixelat
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What is the cat starring at? : What Is rhe cat StarrIng a7? What iss tehe cat starridng at? What is the [UNK] starring at? |
/
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2. Corruption Methods

Some examples of image and text corruption

Contrast Elastic Pixelate
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2. Corruption Methods
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Project Pz:lge
96 different levels of image corruption 87 different levels of text corruption
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JPEG Contrast Frosted
Glass
Drop Drop VB &Only NN & Drop
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Figure 3. Corruption methods used in this study.
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3. Benchmark

VQAV2 GQA NLVR? MSCOCO Caption

The Number of Images QA pairs Images QA pairs Images QA pairs Images Captions

Training set 113.2K  605.1K  72.1K 943.0K 103.2K 86.4K 113.2K 566.8K
Validation set 5.0K 26.7K 10.2K 132.1K 8.1K 7.0K 5.0K 5.0K
Test set 5.0K 26.3K 398 12.6K 8.1K 7.0K 5.0K 5.0K

Table 1. Dataset Statistics

Relative Robustness: RR =1 ——", AP = (P; — P,)
I

P;: performance on in-distribution dataset
Py: performance on out-of-distribution dataset

Equation 1. Evaluation Protocol
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https://adarobustness.github.io

We have built
11 widely used adaptation methods

20 different image corruption methods
96 different levels of image corruption
35 different text corruption methods
87 different levels of text corruption

7 out-of-distribution benchmark datasets



4. Results and Analysis EIHHEI

Adaptation method Updated  VQAV2 GQA NLVR®  MSCOCO Caption L%/
PMN| “mage Corruptions Params Acc (%) RR (%) Acc (%) RR (%) Acc (%) RR (%) CIDEr RR (%)

Full Fine-tuning  100% 66.75 84.86+5.17 55.04 89.20+0.04 73.01 90.34+004115.03 68.40+0.14
Single Adapter 4.18% 65.35 85.76+532 54.14 82.49+004 73.89 90.04+005115.04 68.68+0.14

: Adaptation method Updated VQAV2 GQA NLVR?
‘ PTXT Text Corruptions Params Acc (%) RR (%) Acc (%) RR (%) Acc (%) RR (%)
=L Full Fine-tuning 100% | 66.75  73.65+238  55.04  66.92+2414  73.01  87.06+11.00
Single Adapter 4.18% 65.35 77.64+21.09 54.14 67.47+20.03 73.89 88.49+10.87

AN

A higher sensitivity towards text corruptions, especially to character-level
corruptions

-
-
-
-
PTXT
-
-
-
-
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4. Results and Analysis EIHHEI

Adaptation method Updated  VQAV2 GQA NLVR®  MSCOCO Caption L%/
Image Corruptions Params Acc (%) RR (%) Acc(%) RR (%) Acc(%) RR (%) CIDEr RR (%)

Full Fine-tuning 100% 66.75 84.86+s5.17 55.04 89.20+0.04 73.01 90.34+004 115.03 68.40+0.14
SingleAdapt@ 4.18% 65.35 85.76+532 54.14 82.49+004 73.89 90.04+005115.04 68.68+0.14

Adaptation method Updated VQAV2 GQA NLVR?
Text Corruptions Params Acc (%) RR (%) Acc (%) RR (%) Acc (%) RR (%)
Full Fine-tuning 100% 66.75 73.65+2238 55.04 66.92+2414  73.01 87.06+11.00

Single Adapt@ 4.18% 65.35 77.64+21.00 54.14  67.47+20.03 73.89 88.49+10.87

Full fine-tuning

Ada pter GeneratTed Texts
@ i Pre-trained
9 Model F
D

[embimg: emby ey

13.11.23 Tresp Lab 12



4. Results and Analysis

Project Page

Language information plays a more significant role than visual information
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Figure 4. RR against blank-image corruption.

Tresp Lab

Full Finetuning
Multiple Adapters
Half-shared Adapters
Single Adapter
Hyperformer
Multiple Compacters
Single Compacter
Single LoRA

13



4. Results and Analysis [ ]
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More adaptation data does not consistently enhance robustness.
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Figure 5. RR given different size of adaptation dataset.
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4. Results and Analysis = o]
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More parameters do not ensure enhanced robustness and some even reduce it
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Figure 6. RR given different size of adaptation modules.
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4. Results and Analysis
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Figure 7. RR given both visual and text corruptions.
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Combining corruptions from two
modalities can lead to a greater
drop in robustness
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4. Results and Analysis ;
: L : OfRos
Robustness against natural dataset distribution shift Project Page

follows the similar conclusions.
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Figure 8. Performance on natural distribution shift dataset (VQA-RAD).

13.11.23 Tresp Lab 17



5. Conclusion = o]
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We have built
11 widely used adaptation methods

20 different image corruption methods
96 different levels of image corruption
35 different text corruption methods
87 different levels of text corruption

7 out-of-distribution benchmark datasets

https://adarobustness.github.io



5. Conclusion = o]
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We find out

We have built
11 widely used adaptation methods

ALY

—

20 different image corruption methods

96 different levels of image corruption Full fine-tuning

Ada pter Generated Texts
35 different text corruption methods I
87 different levels of text corruption 25 Pre-trained
0, Model F

7 out-of-distribution benchmark datasets

https://adarobustness.github.io

Check our paper for more !
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