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Introduction - The Optimal Transport Problem

§Distributions: 𝜇 and 𝜈, 
§Supports: 𝐴 and 𝐵
§Mass on support: 𝜇! and 𝜈"
§ 𝑑(𝑎, 𝑏): cost of transporting unit 

mass from 𝑏 ∈ 𝐵 to 𝑎 ∈ 𝐴.
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Introduction - The Optimal Transport Problem

§ 𝜎(𝑎, 𝑏) is the mass transported 
from 𝑏 to 𝑎.

§Cost of the transport plan:

§Denote minimum-cost transport 
plan by 𝜎∗, we define 𝜀-
approximate transport plan 𝜎:
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Introduction - Assignment Problem

§Every Point in A and B has 
mass 1/n

§ There are n vertex-disjoint 
edges with 𝜎 𝑎, 𝑏 = 1/𝑛

Cost of transporting 1
/4 mass from
𝑏 to 𝑎 is 𝑑(𝑎, 𝑏)/4
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Existing Work and Challenges

Sequential:
§ Exact Algorithm (minimum cost 

flow): 𝑂 𝑛! log 𝑛 (~20s, n=10k)
§ 𝜀-Approximation Algorithm: 
𝑂 𝑛"poly ⁄# $ , log 𝑛

§ Best: LMR algorithm, Lahn et al. 
(Neurips’19) +𝑂 ⁄𝑛" 𝜀 + ⁄𝑛 𝜀" , 
hard to parallelize

Parallel:
§ Most successful method: Sinkhorn-

Knopp, +𝑂 ⁄log(𝑛) 𝜀%(#)

§ Simple, easy implementation
§ Stability, convergence issues

§ Best in theoretical: Jambulapati et 
al. +𝑂 ⁄log(𝑛) 𝜀
§ Complex, hard implementation

Major Challenges: Design an efficient 
parallel combinatorial algorithm 
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Our Approach

§Replace sequential search 
with push-relabel in LMR 
algorithm

§Benefits:
§ Easy to parallelize
§ Fully vectorized, pure matrix 

operations
§ For each phase of our algorithm 

execute steps on the right
§ We present the assignment 

problem, and OT can be reduced 
into assignment problem
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Initialization: Extract 
admissible graph 𝐺’
Greedy step: Computes a maximal 
matching 𝑀′ in the graph.
Matching Update
Dual Update



Our Approach - Initialization
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Our Approach - Initialization
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Our Approach - Initialization
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Our Approach - Greedy step
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Our Approach - Greedy step
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Our Approach - Matching Update
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Our Approach - Matching Update
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Our Approach - Dual Update
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Our Approach - Running Time

1515

§OT problem:
§ We use Israeli and Itai (1986) algorithm or MPC model to compute 

maximal matching 𝑀′ in parallel
§ Time per phase: 
O(𝑛") (sequential), O(log 𝑛) (Israeli and Itai), O(loglog 𝑛) (MPC)

§ Number of phases: O( ⁄1 𝜀")
§ Total time: 
O( ⁄𝑛" 𝜀") (sequential), O( ⁄log 𝑛 𝜀") (Israeli and Itai), O(log ⁄log 𝑛 𝜀") (MPC)

§Assignment problem: 
§ O( ⁄𝑛" 𝜀) in sequential



Experiment Results

§Performance Comparison with Sinkhorn on GPU.
§Data Types: Synthetic data, real data (MNIST, NLP)
§Settings:

§ Assignment: synthetic data, MNIST images
§ OT: synthetic data, documents word embeddings.

§Results: our algorithm outperform Sinkhorn for most cases.
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Experiment Results – Running Time
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Experiment Results – Parallel Rounds


