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Introduction - The Optimal Transport Problem
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Introduction - The Optimal Transport Problem

*o(a, b) Is the mass transported

from b to a. s b 5/5 L5 2/5 s
= Cost of the transport plan: N
Z"(b,CL)EB)(A O-(a) b)d(a’) b) V5 1/5 1/5
» Denote minimum-cost transport 1/5

plan by ¢*, we define &-
approximate transport plan g:  1/5 5
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Introduction - Assignment Problem

= Every Point in Aand B has 1/4
mass 1/n O/O G—f)
= There are n vertex-disjoint 1/4
edges with o(a,b) = 1/n 0770 1/4
1/4°
1o ,

Cost of transporting 1

/4 mass from
btoaisd(a,b)/4



Existing Work and Challenges

Sequential: Parallel:
» Exact Algorithm (minimum cost » Most successful method: Sinkhorn-
flow): 0(n3 logn) (~20s, n=10k) Knopp, 0(log(n)/e°M)
= e-Approximation Algorithm: = Simple, easy implementation
0 (n*poly{'/e,logn}) = Stability, convergence issues

» Best: _Ll\/l,R algori’;hm, Lahnzet al. = Best in theoretical: Jambulapati et
(Neurips’19) 0(n?/e + n/e?%) al. 0(log(n)/¢)

hard to parallelize = Complex, hard implementation

Major Challenges: Design an efficient
parallel combinatorial algorithm



Our Approach

» Replace sequential search
with push-relabel in LMR
algorithm

» Benefits:
= Easy to parallelize
= Fully vectorized, pure matrix
operations

» For each phase of our algorithm
execute steps on the right

» \We present the assignment
problem, and OT can be reduced
Into assignment problem




Our Approach - Initialization
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Our Approach - Initialization
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Our Approach - Initialization
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Our Approach - Greedy step

Computes a
maximal
matching M’
in G’
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Our Approach - Greedy step
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Our Approach - Matching Update
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Our Approach - Matching Update
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Our Approach - Dual Update
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Our Approach - Running Time

* OT problem:

» We use Israeli and ltai (1986) algorithm or MPC model to compute
maximal matching M’ in parallel

* Time per phase:
0(n?) (sequential), O(logn) (Israeli and Itai), O(loglogn) (MPC)
= Number of phases: 0(1/£2)
= Total time:
0(n*/e%) (sequential), O(logn/e?) (Israeli and Itai), O(loglogn/&%) (MPC)

= Assignment problem:
= 0(n?/¢) in sequential



Experiment Results

» Performance Comparison with Sinkhorn on GPU.
» Data Types: Synthetic data, real data (MNIST, NLP)

» Settings:
» Assignment: synthetic data, MNIST images
= OT: synthetic data, documents word embeddings.

» Results: our algorithm outperform Sinkhorn for most cases.



Experiment Results — Running Time
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Experiment Results — Parallel Rounds

Synthetic Results - OT Synthetic Results - Assignment MNIST Results - Assignment
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