A Combinatorial Algorithm for
Approximating the

Optimal Transport in the Parallel and
MPC Settings

Nathaniel Lahn, Sharath Raghvendra, Kaiyi Zhang

Introduction - The Optimal Transport Problem

= Distributions: u and v,
1/5 1/5 2/5

= Supports: A and B 1/5 b g o 1/5
» Mass on support: u, and v, &
. . 1/5
*d(a, b): cost of transporting unit 15 5> o 1/5
mass from b € B to a € A. 1/5
1/5 5
/ 2/5

Cost of transporting 1/5 mass from
btoaisd(a,b)/5

Introduction - The Optimal Transport Problem

*o(a, b) Is the mass transported

from b to a. s b 5/5 L5 2/5 s
= Cost of the transport plan: N
Z"(b,CL)EB)(A O-(a) b)d(a’) b) V5 1/5 1/5
» Denote minimum-cost transport 1/5

plan by ¢*, we define &-
approximate transport plan g: 1/5 5

2/5
c(o) <c(c*) +¢

Introduction - Assignment Problem

= Every Point in Aand B has 1/4
mass 1/n O/O G—f)
= There are n vertex-disjoint 1/4
edges with o(a,b) = 1/n 0770 1/4
1/4°
1o ,

Cost of transporting 1

/4 mass from
btoaisd(a,b)/4

Existing Work and Challenges

Sequential: Parallel:
» Exact Algorithm (minimum cost » Most successful method: Sinkhorn-
flow): 0(n3 logn) (~20s, n=10k) Knopp, 0(log(n)/e°M)
= e-Approximation Algorithm: = Simple, easy implementation
0 (n*poly{'/e,logn}) = Stability, convergence issues

» Best: _Ll\/l,R algori’;hm, Lahnzet al. = Best in theoretical: Jambulapati et
(Neurips’19) 0(n?/e + n/e?%) al. 0(log(n)/¢)

hard to parallelize = Complex, hard implementation

Major Challenges: Design an efficient
parallel combinatorial algorithm

Our Approach

» Replace sequential search
with push-relabel in LMR
algorithm

» Benefits:
= Easy to parallelize
= Fully vectorized, pure matrix
operations

» For each phase of our algorithm
execute steps on the right

» \We present the assignment
problem, and OT can be reduced
Into assignment problem

Our Approach - Initialization

B

Matched
vertices of B

Free
vertices of B

Initial
Graph G

x

Our Approach - Initialization

B

Extract Zero
Slack Edges
From G’

x

Our Approach - Initialization

Admissible
Graph G’

Our Approach - Greedy step

Computes a
maximal
matching M’
in G’

10

Our Approach - Greedy step

B

Computes a
maximal

matching M’ ¢

in G’

A B

@ -

O P
/

11

Our Approach - Matching Update

B

N
vy

Matching
Update

12

Our Approach - Matching Update

B

Matching
Update

13

Our Approach - Dual Update

N
vy

B

R « Algorithm makes
progress by
iIncreasing the

dual weights
// ® We prove the
upper bound of
number of

iterations based
on the dual

x \ 3T weights

Dual
Update

14

Our Approach - Running Time

* OT problem:

» We use Israeli and ltai (1986) algorithm or MPC model to compute
maximal matching M’ in parallel

* Time per phase:
0(n?) (sequential), O(logn) (Israeli and Itai), O(loglogn) (MPC)
= Number of phases: 0(1/£2)
= Total time:
0(n*/e%) (sequential), O(logn/e?) (Israeli and Itai), O(loglogn/&%) (MPC)

= Assignment problem:
= 0(n?/¢) in sequential

Experiment Results

» Performance Comparison with Sinkhorn on GPU.
» Data Types: Synthetic data, real data (MNIST, NLP)

» Settings:
» Assignment: synthetic data, MNIST images
= OT: synthetic data, documents word embeddings.

» Results: our algorithm outperform Sinkhorn for most cases.

Experiment Results — Running Time

Synthetic Results - OT

0.01

100
-#-sinkhorn
-@-our algorithm
10
S
£
F
1
0.1
0.0007 0.002 0.006
€
(a)
NLP Results - OT - tcme
10
—&-sinkhorn
—@-our algorithm
1
5
£
=
0.1
0.01
0.2 0.4 0.6 08 1

&
(d

Synthetic Results - Assignment

100
-i-sinkhorn
-@-our algorithm
10
S
£
[_‘
1
0.1
0.0007 0.002 . 0.006 0.01
(b)
NLP Results - OT - 20news
10
—i-sinkhorn
—@-our algorithm
1
S
g
H
0.1
0.01
0.12 0.2 0.4 06 08 1

(©

MNIST Results - Assignment

100
-i-sinkhorn
—@-our algorithm
10
2
(]
£
[_1
1
0.1
0.03 0.05 c 0.1 0.15 0.2
(©)
NLP Results - OT - IMDB
10

Time/s

0.01

-i-sinkhorn
—@-our algorithm

0.1

0.2 0.4

17

Experiment Results — Parallel Rounds

Synthetic Results - OT Synthetic Results - Assignment MNIST Results - Assignment

10000 10000 - 100000
—i-sinkhorn —i-sinkhorn —-sinkhorn
=@-our algorithm =@-our algorithm -@-our algorithm
" " ,,10000
2 = 1000 2
2 2 2
#1000 & & 1000
2 2 2
= = S
8 s 100 s
& A = 100
100 10 10
0.0007 0'0025 0.006 0.01 0.0007 0.002 0.006 0.01 0.03 0.05 . 0l 0.15 0.2
F:
(@ (b) ©
NLP Results - OT - tcme NLP Results - OT - 20news NLP Results - OT - IMDB
10000 10000 10000 -
—-sinkhorn —-sinkhorn —-sinkhorn _
-@-our algorithm -@-our algorithm —@-our algorithm
» 1000 » 1000 . 1000
g g g
=] g g
3 2 3
100 &2 100 & 100
2 2 2L
10 10 =~ 10
1 1 1
0.2 0.4 06 08 1 0.12 0.2 0.4 06 08 1 0.1 0.2 0.4 06 08 1
£ € £
) ©) ®

