The Pick-to-Learn Algorithm:

Empowering Compression for Tight Generalization Bounds &
Improved Post-training Performance

Dario Paccagnan, Marco C. Campi, Simone Garatti

£ -7+ 2 | UNIVERSITY

Imperial College
"_' OF BRESCIA

London

POLITECNICO
MILANO 1863



Motivation: ML algo with good performance & guarantees
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- True generalization
- Bound on generalization
Why?

Not just a theoretical exercise...
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In this work we address both

L S ontmmTa et
[[PS]°P8 *PTE ,4(/\,‘,(\,1'/\ },_q#w,

Mg Py b [l

N
A e 1L ALy

1 A A

i T L_Tr H \—~/w\—-.f‘\«\m\—(
|

\ A A
W 4 L{ LIS R




Generalization bounds: existing approaches & limitations
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ON LARGE-BATCH TRAINING FOR DEEP LEARNING: Edif
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1 INTRODUCTION
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Uses additional data:

- Test-set bounds, e.g., [Chernhoff, 1952

- PAC_—Bayes [Dziugate & Roy, 2017] [Perez et al, 2021]*
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an we break this barrier?

Yes! With (preferent) compression theory

Compression, Generalization and Learning

N PN{risk < (6, |[c(D)D}=1-6

Abstract

A compression function is a map that slims down an observational set into a subset 1 ‘ ‘
of reduced size, while preserving its informational content. In multiple applications,
the condition that one new observation makes the d set change is i
that this observation brings in extra information and, in learning theory, this corre- _4_
sponds to misclassification, or misprediction. In this paper, we lay the foundations 5 = 1 0
of a new theory that allows one to keep control on the probability of change of com-
pression (called the “risk”). We identify conditions under which the cardinality of the 0 . 8
set is a consi i for the risk (without any upper limit on the

d set) and prove unprecedentedly tight bounds to evaluate the
risk under a generally applicable condition of preference. All results are usable in a
fully agnostic setup, without requiring any a priori knowledge on the probability dis-
tribution of the observations. Not only these results offer a valid support to develop O 6
trust in observation-driven methodologies, they also play a fundamental role in learning .
techniques as a tool for hyper-parameter tuning. g

size of the

Keywords: Compression Schemes, Statistical Risk, Statistical Learning Theory.

1 Introduction 04 | O

Compression is an established topic in theoretical learning, and various generalization bounds
have been proven for compression schemes.

arXiv:2301.12767v1 [cs.LG] 30 Jan 2023

According to a definition introduced in [30], a compression scheme consists of i. a com- 0 . 2 | T ]
pression function c, which maps any list of observed examples S = ((z1,31),..., (zn,yn)) .
(z; is called an “instance” and y; a “label”) into a sub-list c(S), and ii. a reconstruction -
Junction p, which maps any list of examples S into a classifier p(S). An important feature of o
a classifier is its risk and, in the context of compression schemes, one is interested in the risk ° | D ‘ | - 5 O 0 )

associated to the classifier p(c(S)). The concept of risk finds a natural definition in statistical O
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Challenge: ML algos do not have compression properties

[Bousquet et al, 2020] [Hanneke & Kantorovich, 2021]



Main result: P2L induces preferent compression

Goal: Given a black-box learning algo L, construct a meta-algorithm (P2L)
around it to secure preferent compression

Input: dataset D; learning algorithm L(D), scoring function sy, (z)

Initialize: T = @, h = hy, z* = argmax sp,(2)
ZED\T

While max sy (z) > threshold do
ZED\T

T «Tu{z"}
h « L(T)

z" « argmax sy (z)
ZED\T

Theorem (informal): P2L is a preferent compression algorithm

Hopes: - P2L compresses “a lot”
- P2L does not change the “nature” of L



Experiments: MNIST classification

Experiment: binary MNIST, N = 1000

Comparison: P2L, Train+Test (TT),
care about both true gen and bound
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Take home: P2L superior to

[Dziugate & Roy, 2017] [Perez et al, 2021]
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, comparable TT bound but better true misclass!



Experiments: regression

+  Examples

y=f(z)
\ - -- Compression
t ——  Test-set

Experiment: noisy sin(2.57x)/2.5mx, N = 200 1|

Comparison: Train+Test-set (TT) vs P2L
care about both perf and bound
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Take home: P2L beat TT barrier, i.e., good bound and true risk!
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Abstract

Generalization bounds are valuable both for theory and applications. On the one
hand, they shed light on the mechanisms that underpin the learning processes; on the
other, they certify how well a learned model performs against unseen inputs. In this
work we build upon a recent breakthrough in compression theory (Campi & Garatti,
2023) to develop a new framework yielding tight generalization bounds of wide
practical applicability. The core idea is to embed any given learning algorithm into
a suitably-constructed meta-algorithm (here called Pick-to-Learn, P2L) in order to
instill desirable compression properties. When applied to the MNIST classification
dataset and to a synthetic regression problem, P2L not only attains generalization
bounds that compare favorably with the state of the art (test-set and PAC-Bayes
bounds), but it also learns models with better post-training performance.
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