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Structure-based drug discovery

Binding energy prediction (small molecule/antibody ligands)
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Current binding energy prediction approach

Supervised and unsupervised approaches

Supervised models
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 High accuracy (provided
enough training data)

 Need to collect binding
data (e.g., phage-display
library) for every protein

 Data collection is costly
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Our method: unsupervised energy-based model
Learn binding free energy from crystal structures (data-driven)

Training set: protein complexes
crystal structures from PDB
(No binding affinity labels)

Energy-based Model
(EBM)
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Our method: unsupervised energy-based model
Learn binding free energy from crystal structures (data-driven)

* Intuition: crystal structures should be the local The space of all possible
minimum of the energy landscape protein complexes

e |

» Suppose Ey(x) is the energy of a protein complex LN | |

» Its likelihood is p(x) o exp(—Ey(x))

 Minimizing the energy of crystal structures =
maximizing their likelihood (standard objective in
generative models / protein language models)

 Q1: How to parameterize £ (x)?

) | | o o Binding energy Binding energy
Q2: What’s the training objective? — 136 —_15.2



Energy-based model (EBM) architecture

Requirement: E(X) is SE(3)-invariant and differentiable w.r.t. X
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Training EBMs with SE(3) denoising score matching

Perturbing input complexes with rigid transformation noises

Random rigid
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Neural Euler’s rotation equation (NERE)

Infer rotation R from gradient V E,(x) (force)

Protein Score — Gradient of the

Force — torgque
V Eg(x) energy = force

— rotation

~

Ligand
atom

. The torque applied to the ligand 7 = Z (x;, —pu) X V_Ey(x)
) l

« (Euler’s rotation equation) Angular acceleration of the ligand a = [ _17, where [ is the inertia matrix

» Angular velocity @ = I~'zAt for an infinitesimal time At
0 —W, Wy
» Rotation matrix R is the exponential of the following matrix W(w) = | w. 0 —wy,
—W, Wy 0




Results: protein-ligand binding
Log-likelihood is strongly correlated with binding affinity

* TJraining set: 5237 protein-ligand complexes In Supervised methods
PDBBInd refined set (without using binding
affinity data) TankBind 0.82
IGN 0.84
e Test set: 285 complexes from PDBBInd (core) KDeep 0.824

Measure the Pearson correlation between
predicted and true affinity

o Supervised models (TankBind, IGN, KDeep)
are trained on ~18000 binding affinity data in
PDBBIind (general subset) o

e SE(3) DSM outperforms MM/GBSA and other Gaussian DSM 0.638
unsupervised models like Gaussian DSM and NERE DSM 0.656
contrastive learning 0 02 04 06 08 1

Pearson Correlation
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Results: antibody-antigen binding

Unsupervised models outperform supervised methods

0.35
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0.323
0.318

0.308
0.335
0.361

* Training set: 3416 complexes from Structure Supervised methods

Antibody Database (SAbDab).
SKEMPI |

* TJest set: 566 complexes from SAbDab that have 0 0.1
binding affinity labels

 We compare With physical potentials (AP_PISA, g
/RANK), protein language models (ESM-IF, SRANK
ESM-1v), and a supervised neural network trained CSM-1y
on SKEMPI binding affinity data ESM-IF

+ We outperform supervised baseline because we Co_r‘tra;ivl\j
can leverage more unlabeled antibody-antigen SR

NERE DSM

complexes T 04
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Pearson Correlation
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Conclusion & acknowledgements

Towards unsupervised models for protein-ligand binding

Main contribution

1. Formulate binding affinity prediction as a generative modeling problem
* Train the generative model using SE(3) denoising score matching (DSM)

2. Propose a simple equivariant rotation prediction module for SE(3) DSM

\_

 Embed Euler’s rotation equation into neural networks (adding physical prior)
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