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Structure-based drug discovery 
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Binding energy prediction (small molecule/antibody ligands)
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Lots of exciting 
progress in protein 
structure prediction 
and docking

Antigen 
structure

Antibody 
structure

Docking



Current binding energy prediction approach
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Supervised and unsupervised approaches
Supervised models

• High accuracy (provided 
enough training data)


• Need to collect binding 
data (e.g., phage-display 
library) for every protein


• Data collection is costly

?

Unsupervised models Physics-based models

• Based on first principles


• No training data required


• Extremely slow

Rosetta FoldX
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Our method: unsupervised energy-based model
Learn binding free energy from crystal structures (data-driven)

Energy-based Model 
(EBM)

Training set: protein complexes 
crystal structures from PDB

(No binding affinity labels)

The space of all possible 
protein complexes

Binding energy 
= -13.6

Binding energy 
= -15.2
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Our method: unsupervised energy-based model
Learn binding free energy from crystal structures (data-driven)

• Intuition: crystal structures should be the local 
minimum of the energy landscape


• Suppose  is the energy of a protein complex


• Its likelihood is 


• Minimizing the energy of crystal structures = 
maximizing their likelihood (standard objective in 
generative models / protein language models)


• Q1: How to parameterize ?


• Q2: What’s the training objective?

Eθ(x)

p(x) ∝ exp(−Eθ(x))

Eθ(x)

The space of all possible 
protein complexes

Binding energy 
= -13.6

Binding energy 
= -15.2



Energy-based model (EBM) architecture
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Requirement:  is SE(3)-invariant and differentiable w.r.t.  E(X) X

Antigen

Antibody

ESM2 …

[x1, y1, z1]
[x2, y2, z2]

[xm, ym, zm]

…

[x1, y1, z1]

[x2, y2, z2]

[xn, yn, zn]

……

SE(3)-invariant protein encoder

ESM2

Features A Coordinates X

…
…

Geometric 
embedding hi

Energy 
Eθ(X)+

Sum of dot 
products



Training EBMs with SE(3) denoising score matching
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Perturbing input complexes with rigid transformation noises

Energy 
Eθ(X)

EBM

Gradient 
∇X Eθ(X)

Euler’s rotation  
equation

xi − μ

Force

Infer rotation , 
translation 

ω̃
t̃

DSM loss 

 

ℓ =
∥ω̃ − ∇ωlog p(ω)∥2

+∥t̃ − ∇tlog p(t)∥2

Random rigid 
transformation

Rotation  
Translation  

ω ∼ p(ω)
t ∼ p(t)

ω

t

ω̃
t̃



Neural Euler’s rotation equation (NERE)
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Infer rotation  from gradient  (force)R ∇xEθ(x)

Score 

∇xEθ(x)

• The torque applied to the ligand 


• (Euler’s rotation equation) Angular acceleration of the ligand , where  is the inertia matrix


• Angular velocity  for an infinitesimal time 


• Rotation matrix  is the exponential of the following matrix 

τ = ∑i
(xi − μ) × ∇xi

Eθ(x)

α = I−1τ I

ω = I−1τΔt Δt

R W(ω) =

Protein

Ligand 
atom

Gradient of the 
energy = force 

Force  torque 
 rotation

→
→

where IN 2 R3⇥3 is an inertia matrix that describes the
mass distribution of a ligand and the torque needed for a
desired angular acceleration. Importantly, the value of ⌧

and IN depends on the rotation center µ. Suppose all atoms
have unit mass and each atom receives a force fi, the torque
and inertia matrix are defined as follows

⌧ =
X

i2ligand

(xi � µ)⇥ fi (2)

IN =
X

i2ligand

kxi � µk2I � (xi � µ)(xi � µ)> (3)

In this paper, we choose µ as the center of a ligand. Notice
that when the ligand is static (! = 0), Euler’s equation has a
much simpler form IN

d!
dt

= ⌧ . We will use this simplified
form for the rest of this work.

3.2. Force Layer

To predict a rotation using Euler’s rotation equations, we
need to know the force fi of each atom. In this paper, we
model this force term as the gradient (@E/@xi)> of an en-
ergy function E(A,X). The advantage of this approach is
that we can interpret the learned energy as binding affinity,
which is very useful for virtual screening. By definition,
the energy function must be differentiable with respect to
X and SE(3)-invariant. Thus, we adopt the frame averag-
ing technique [32] so that E directly takes coordinates X

as input rather than a distance matrix. To be specific, our
energy function is parameterized as follows

H =
1

|G|
X

gk2G
�h(A, gk(X)) (4)

E(A,X) =
X

i,j

�o(hi,hj)I[Dij < d] (5)

fi =

✓
@E(A,X)

@xi

◆>
(6)

where the encoder �h is a self-attention neural network [33]
that learns atom representations H = [h1, · · · ,hn] based
on atom features A and coordinates X . In Eq.(4), the
model first projects the coordinates X onto a set of frames
{gk(X)} defined in Puny et al. [32], encode each frame to
hidden representations, and then average the frame repre-
sentations to maintain SE(3) invariance. Finally, we com-
pute the energy E(A,X) by modeling the pairwise poten-
tial �o(hi,hj) (scalar) between all atom pairs. The poten-
tial is calculated only for atoms within a distance threshold
d because atomic interaction vanishes beyond certain dis-
tance.

Remark. We choose to model fi as the gradient @E/@xi

because we want to learn a binding energy function. For
other applications like docking, fi can be the output of a

score network [8]. For example, we can predict fi using
EGNN force layers [10]:

fi =
X

j
fij , fij = �x(hi,hj)(xi � xj) (7)

where �x is a feed-forward neural network that takes the
hidden representations hi,hj and outputs the magnitude of
the force (scalar) between points i and j. The force fij

follows the direction xi � xj . We leave the application of
NERE to docking for future work.

3.3. Rotation Layer

As shown in Figure 1, NERE outputs a rotation based on
the predicted forces in the following procedure

! = CI
�1
N

⌧ = CI
�1
N

X

i2ligand

(xi � µ)⇥ fi (8)

x
new
i

= xi + c1! ⇥ xi + c2! ⇥ (! ⇥ xi) (9)

The rationale behind each equation is explained as follows.
Eq.(8) calculates the torque ⌧ based on the predicted forces
fij and the resulting angular acceleration using the simpli-
fied Euler’s equation IN

d!
dt

= ⌧ . Assuming constant accel-
eration over a short time period C, the new angular velocity
! = CI

�1
N

⌧ . We note that calculating the inverse I
�1
N

is
cheap because it is a constant 3⇥ 3 matrix.

Given the predicted angular velocity !, its corresponding
rotation matrix is defined by a matrix exponential map

R! = exp(W!), W! =

0

@
0 �!z !y

!z 0 �!x

�!y !x 0

1

A , (10)

where ! = (!x,!y,!z) and W! is an infinitesimal ro-
tation matrix. Since W! is a skew symmetric matrix, the
matrix exponential has the following closed form

R! = exp(W!) = I + c1W! + c2W
2
! (11)

c1 =
sin k!k
k!k , c2 =

1� cos k!k
k!k2 (12)

Fortunately, we do not need to explicitly compute the matrix
exponential R! since W! is the linear mapping of cross
product, i.e. ! ⇥ r = W!r. Therefore, applying the rota-
tion matrix R!xi is equivalent to Eq.(9) expressed in terms
of cross products.

3.4. Analysis of Equivariance

Intuitively, NERE should be equivariant under SO(3) rota-
tion group because it is derived from physics. We formally
state this proposition as follows (proof in the appendix).



Results: protein-ligand binding
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• Training set: 5237 protein-ligand complexes in 
PDBBind refined set (without using binding 
affinity data)


• Test set: 285 complexes from PDBBind (core) 
Measure the Pearson correlation between 
predicted and true affinity


• Supervised models (TankBind, IGN, KDeep) 
are trained on ~18000 binding affinity data in 
PDBBind (general subset)


• SE(3) DSM outperforms MM/GBSA and other 
unsupervised models like Gaussian DSM and 
contrastive learning

Log-likelihood is strongly correlated with binding affinity

Unsupervised methods

Autodock Vina

MM/GBSA

Contrastive

Gaussian DSM

NERE DSM

Pearson Correlation
0 0.2 0.4 0.6 0.8 1

0.656

0.638

0.625

0.647

0.604

Supervised methods

TankBind

IGN

KDeep

0 0.2 0.4 0.6 0.8 1

0.824

0.84

0.82



Results: antibody-antigen binding
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• Training set: 3416 complexes from Structure 
Antibody Database (SAbDab).


• Test set: 566 complexes from SAbDab that have 
binding affinity labels


• We compare with physical potentials (AP_PISA, 
ZRANK), protein language models (ESM-IF, 
ESM-1v), and a supervised neural network trained 
on SKEMPI binding affinity data


• We outperform supervised baseline because we 
can leverage more unlabeled antibody-antigen 
complexes

Unsupervised models outperform supervised methods

Unsupervised methods

AP_PISA
ZRANK
ESM-1v
ESM-IF

Contrastive
Gaussian DSM

NERE DSM

Pearson Correlation
0 0.1 0.2 0.3 0.4 0.5

0.361
0.335

0.308
0.024
0.038

0.318
0.323

Supervised methods

SKEMPI

0 0.1 0.2 0.3 0.4 0.5

0.35



Conclusion & acknowledgements
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Towards unsupervised models for protein-ligand binding

1. Formulate binding affinity prediction as a generative modeling problem


• Train the generative model using SE(3) denoising score matching (DSM)


2. Propose a simple equivariant rotation prediction module for SE(3) DSM


• Embed Euler’s rotation equation into neural networks (adding physical prior)

Main contribution
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