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A class of nonconvex problem

Problem: We study a class of constrained nonconvex optimization
problem [Zheng et al., 2018], which is related to learning Directed
Acyclic Graphs(DAG) from observational data, and defined as fol-
lows :

min
Θ

Q(Θ) subject to h(W (Θ)) = 0 (1)

where Θl corresponds to all model parameters, and W (Θ) ∈ Rd×d

is weigted adjacency matrix, induced by Θ. Moreover, Q : Rl → R
is refer to as the score function. h : Rd×d → [0,∞) is nonnegative
non-convex differentiable function that penalizes cycles.
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Motivation

Multiple empirical studies have shown the the global or near-global
minimizer of (1) can be found in a variety of setting, such as linear
models with Gaussian and non-Gaussian noises [Bello et al., 2022, Ng
et al., 2022, Zheng et al., 2018], and nonlinear models, represented
by neural networks, with additive Gaussian noises [Lachapelle et al.,
2020, Yu et al., 2019, Zheng et al., 2020].

Instead of solving (1) directly, researchers have considered some
type of penalty method such as augmented Lagrangian, quadratic
penalty, and a log-barrier. In all cases, the penalty approach consists
of solving a sequence of unconstrained non-convex problem, where
the constrained is enforced progressively.

min
Θ

gµk(Θ) := µkf (Θ) + h(W (Θ)) (2)

These methods are called homotopy methods.
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Two natural questions

Motivated by the empirical success of solving (1) by penalty method,
one is inevitably led to ask the following questions
• Are the loss lanscapes gµk(Θ) benign for different µk?
• Is there a (tracable) solution path {Θk} that converges to a

gloabl minimum of (1)?
Due to the NP-completeness of learning DAGs, the first answer
would be expected to be negative.

For second question, we seek a solution path that can be tractably
computed in practice, e.g. by gradient descent.
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Bivariate case
An ideal case

We focus on the perhaps the simplest setting (Bivariate case) where
interesting phenomena take place. Although the simplistic of bivari-
ate setting, it provides a valuable starting point for future research
in more complex settings! Moreover, we study how (2) is actually
solved in practice.
• Random variables: X = (X1,X2) ∈ R2

• Independent errors: N = (N1,N2) ∈ R2 with equal variance,
i.e., Var(N1) = Var(N2).
• Structural Equation Model: X = W>

∗ X + N where W∗ is a
weighted adjacent matrix encoding the coefficients in the
linear model. Moreover, W∗ is acyclic. Without loss of
generality,

W∗ =

(
0 a
0 0

)
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Mathematical formulation

In our setting, the problem can be formulated as

min
W

f (W ) :=
1

2
EX

[
‖X −W>X‖22

]
min
x,y

f (x, y) :=1

2

(
(1− ay)2 + y2 + (a − x)2 + 1

)
s.t. h(x, y) := x2y2

2
= 0

(3)

The penalized version can be written as

min
x,y

gµ(x, y) :=µf (x, y) + h(x, y)

=
µ

2

(
(1− ay)2 + y2 + (a − x)2 + 1

)
+

x2y2

2

(4)

6/15



Geometry of gµ(W )

Lemma
There exists τ > 0, then ∀µ < τ , the equation ∇gµ(W ) = 0 has
three different solutions, denoted as W ∗

µ ,W ∗∗
µ ,W ∗∗∗

µ .

lim
µ→0

W ∗
µ =

(
0 a
0 0

)
, lim

µ→0
W ∗∗

µ =

(
0 0
0 0

)
, lim

µ→0
W ∗∗∗

µ =

(
0 0
a

a2+1 0

)
Moreover, W ∗

µ is global minima, W ∗∗∗
µ is local minima, and

W ∗∗
µ is a saddle point.
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Geometry of gµ(W )

(a) Contour plot
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Figure: Visualizing the nonconvex landscape. (a) A contour plot of gµ for
a = 0.5 and µ = 0.005. We only show a section of the landscape for
better visualization. The solid lines represent the contours, while the
dashed lines represent the vector field −∇gµ. (b) Stationary points of gµ

A good scheduling of µk is needed to avoid being trapped in a local
minimum!

8/15



Algorithm

Algorithm 1 GradientFlow(f , z0)
1: set z(0) = z0
2: d

dt z(t) = −∇f (z(t))
3: return limt→∞ z(t)

Algorithm 2 Homotopy algorithm for solving (3)

1: Input: Initial W0 = W (x0, y0), µ0 ∈
[

a2

4(a2+1)3
, a2

4

)
2: Output: {Wµk}∞k=0

3: Wµ0 ← GradientFlow(gµ0 ,W0)
4: for k = 1, 2, ... do
5: Let µk = (2/a)2/3µ4/3

k−1

6: Wµk ← GradientFlow(gµk ,Wµk−1
)

7: end for
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Convergence to Global Optimum

Theorem
For any initialization W0 and a ∈ R, the solution path provided
in Algorithm 2 converges to the global optimum of (3), i.e.,

lim
k→∞

Wµk = WG.

where WG is global optimum of (3).

Under our setting, WG = W∗, which implies we recover the ground
truth W∗.
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A practical homotopy algorithm

Algorithm 3 Practical (i.e. independent of a and W∗) Homotopy
algorithm for solving (3)

1: Input: Initial W0 = W (x0, y0)
2: Output: {Wµk}∞k=0

3: µ0 ← 1
27

4: Wµ0 ← GradientFlow(gµ0 ,W0)
5: for k = 1, 2, ... do
6: Let µk = (2/

√
5µ0)

2/3µ
4/3
k−1

7: Wµk ← GradientFlow(gµk ,Wµk−1
)

8: end for

Lemma
Assume a >

√
5/27, then for any initialization W0, Algorithm 3

outputs the global optimal solution to (3), i.e.,
limk→∞ Wµk = WG.
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From gradient flow to gradient descent
Gradient flow is used to locate the next stationary points, which is
not practically feasible. A viable alternative is to replace gradient
flow with gradient descent.

Theorem (Informal)
For any εdist > 0, set µ0 satisfy a mild condition, and use
εk = min{βaµk , µ

3/2
k }, µk+1 = (2µ2

k)
2/3 (a+εk/µk)

2/3

(a−εk/µk)4/3
, and let

K ≡ K(µ0, a, εdist) ∈ O
(

ln µ0

aεdist

)
. Then, for any initialization

W0, following the updated procedure above for k = 0, . . . ,K , we
have:

‖Wµk ,εk −WG‖2 ≤ εdist

that is, Wµk ,εk is εdist-close in Frobenius norm to global optimum
WG. Moreover, the total number of gradient descent steps is
upper bounded by O

((
µ0a2 + a2 + µ0

) (
1

a6 + 1
ε6dist

))
.
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More details in paper!
Thanks for Listening!
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