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• Machine-Learning-As-A-Service 
(MLaaS) faces security challenges. 

• Secure private inference (PI): multi-
party computation (MPC)  and 
homomorphic encryption (HE). 

• HE requires much less 
communication cost compared to 
MPC, but still faces computational 
overhead. 

Background
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Motivation
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Top: Rescale decreases the ciphertext level. Bottom: Higher 
polynomial degree leads to longer HE operator's latency.

Unstructured vs. structural linearization. Unstructured one 
doesn't lead to effective level reduction.

Observation 2: Structural/synchronized 
linearization matters! 

Observation 1: Conserving Levels in CKKS



Structural Linearized GCN

Structural linearization: Polynomial replacement 
& overall workflow
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Experiment Result

LinGCN is evaluated on the NTU-RGB+D 
dataset, and excels in the following aspects: 
- Reduced multiplication depth: lower 

encryption level, lower latency
- Minimal accuracy loss 
- 10% accuracy improvement over CryptoGCN.
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