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l Dec-POMDP

* A Dec-POMDP is a “Decentralized Partially Observable Markov Decision Process”

* It’s a bunch of “agents” that are working together for a common reward

* Each agent only takes a local observation of the environment

* A fully cooperative multi-agent task can be described as a tuple {S,U,p,r,Z,0,n,~y)
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B Motivation

Individual Global Max:

argmax,: Q1 (71, u')
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I Motivation
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B Dual Self-Awareness Hypothesis

Ego Alter Ego

Human Society Individuality

There are concepts of ego and alter ego in psychology. The ego usually refers to the
conscious part of the individual, and Freud considered the ego to be the executive of the
personality. Some people believe that an alter ego pertains to a different version of
oneself from the authentic self. Others define the alter ego in more detail as the
evaluation of the self by others.

Enlightened by these psychological concepts, we propose a novel MARL algorithm, Dual
self-Awareness Value dEcomposition (DAVE).
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I Dual Self-Awareness Framework
The objective of the IGM-free value decomposition method is as follows:

arg max Qo (s, u),
T

Without the IGM assumption, it is NP-hard because it cannot be solved and verified in polynomial
time. Therefore, in our proposed dual self-awareness framework, each agent has an additional
policy network to assist the value function network to find the action corresponding to the optimal
joint policy.

Ego Policy Model & Alter Ego Value Function Model
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I Dual Self-Awareness Framework

So we modify the objective of the cooperative multi-agent value decomposition problem from
previous equation to

arg max Q' (s, u®), s.t. ut e U™,
reeo
where [J¢€° .— {uggo ~ T (5) ?{Vfl and M is the number of samples.
Define
u* = arg max Q2" (s, ue®)
L0
The loss function for the joint ego policy can be written as: ,Cego = —log w®°(u” | s).

Proposition A.1. As long as the ego policy assigns non-zero probabilities to all actions, this method
will approach the objective described by Equation (1) as the number of samples M increases.

Proof. Let (u”)" denote the individual actions corresponding to the global optimal joint state-action
value function under state s, and the optimal joint action is u* = {(u')",..., (u™)"}. Then the
probability that the sampling procedure draws u* is expressed as:

p(u*) =1— (1 — 7 (u*|s))M

_1_(1_1_[7,.3.50 41)‘|Tu)).-\l.

where 7o (+|-) € (0, 1) is true for any action. So the second term (1 — 7°°(u*|s))* € (0, 1) in the
equation decreases as M increases, indicating that p(w”*) is positively correlated with the sample size
M., O



IAnti-Ego Exploration

The relationship between the ego and anti-
ego policy of each agent is as follows:

Input Output
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B Details of the Ego Policy Update
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IAIgorithmic Description

Algorithm 1 Training Procedure for DAVE

Hyperparameters: Sample size M, discount factor 7, exploration coefficients A
Initialize the parameters of the neural networks shown in Figure 2

1: for each episode do

2:
3
4:
=
6
7
8

9:
10:
| 5
12:
13;

14:
15:

16:
75
18:
19:

Get the global state s; and the local observations z; = {z1,2%, ..., 27} of all agents
fort < 1to7 — 1do

fora < 1tondo

Select action u¢ according to the ego policy g

end for

Carry out the joint action w; = {u;,...,u}

Get the global reward 7, 1, the next local observations 2z, ;, and the next state sy
end for
Store the episode in the replay buffer D
Sample a batch of episodes B ~ Uniform(D)
Sample and obtain the joint action set U := {u:*® ~ w°€°(s)}M | for each trajectory in B
Update the parameters of the alter ego value function and the IGM-free mixing network
according Equation (5)
Obtain the anti-ego policies 7, of each agent
Sample and obtain U~ = {@° ~ 7°°(s)}*, by sampling M times from the anti-ego
policy for each state s in B
Find the most novel joint action w* for each state s in B according Equation (8)
Update the parameters of the ego policy according Equation (9)
Update the parameters of the auto-encoder according Equation (6)
Update the parameters of the target network periodically

20: end for




B Experiment (Matrix Game) _ _ .
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Figure 3: Payoffs of the two matrix games. Table 3: Proportion of different convergence results in Matrix Game I1.
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Figure 4: The learning curves of DAVE and other baselines on the matrix games. Note that the
ordinates are non-uniform.



B Experiment (Matrix Game)

Multi-Step Matrix Game

—_
=N

1|0 0. O
X, X % -
1
Ox Ox Ox 5
c
3
i [}
8 Times 1 0x 8 Times E 8 !
3
©
¥ Initial State J E = DAVE — CW-QMIX
1 1 1 1 4| —— DAVE w/o Exploraton ~ —— QTRAN
—— QPLEX — MAVEN
11 4 1 1 2 FACMAC (Non-Mono) = QMIX
OW-QMIX
Terminal Terminal 0
0 20 40 60 80 100
Step (K)

Figure 5: Left: Illustrations of the multi-step matrix
game. Right: Performance over time on the multi-step
matrix game.



I Experiment (SMAC)
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Figure 6: Performance comparison with baselines in different scenarios.



IExperiment (SMACv2) —oveam o — ok
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Figure 13: Comparisons of median win rate for variants of QMIX on SMACv2.
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Figure 14: Comparisons of median win rate for variants of QPLEX on SMACv2.



(a) Hopper (3)

Figure 16: Illustration of benchmark tasks in Multi-Agent MuJoCo.
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Figure 17: Median episode return on different MA-MuJoCo tasks. Note that only QMIX follows the

IGM assumption.

o - —



I Experiment

M=1 — M=5 50 — M=100
2s vs 1sc MMM2
100 po— 100 100
= A S =
g 80 g 80 g 80
> 60 > 60 > 60
& 40 2 40 = 40
c c
§ 20 i 20 g 20 é, o
0 0 0
0.0 04 08 1.2 18 2.0 0.0 0.4 0.8 12 16 20 0.0 0.4 0.8 12 16 20
T (mil) T (mil) T (mil)
Figure 7: Influence of the sample size M for DAVE.
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Figure 8: Results of DAVE with different \;,;;. The action space for the three scenarios gradually
increases from left to right.



ISummary

The first multi-agent value decomposition method that completely abandons IGM

Can be applied to most IGM-based value decomposition methods and turn them into
Pros IGM-free ones

Can achieve desirable performance in various cooperative tasks, including non-monotonic
and complex tasks

_ Use Autoencoder to avoid the algorithm becoming stuck in a local optimum

Choice of A

Cons
May be hard to solve the tasks with large action spaces



