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Overlooked issue: Time synchronization

shi1 €S, rp €R
Observation
& Reward

Action
ap €A :
Environment Agent 5, €S !

7 (50, 1,71, 82,02,72, ooy S, QHL )

Ps 0 i O O >
~7 Episode
k Rollout Train policy k+1 Rollout Train policy k+2
trajectory trajectory

Figure 1: Conventional Non-stationary RL environment

o Key observation: In reality, environmental changes occur over wall-clock
time (t) rather than episode progress (k).

o Existing works: episode k — collect data & train policy — episode k + 1.

@ In reality: time tx — spend At for collecting data & training — time
tee1 =t + At
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Remove time synchronization
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Figure 2: Different training time makes agent encounters different environment

@ In time-desynchorzied environment, the agent should choose when to
interact (t1,1t,, ..., tx) additional to how many times to interact (K)

@ The choice of interaction times (t1,t2, ..., tx) significantly impacts the
suboptimality gap of the policy.
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Contribution

@ We propose a Proactively Synchronizing Tempo (ProST) framework that
computes suboptimal {t1,t2, ..., tx } (= {t}1:x).

o ProST framwork computes suboptimal {t}1.x by minimizing the upper
bound of its performance metric, dynamic regret.

@ One interesting property is that we show suboptimal {t};.x strikes a
balance between the policy training time (agent tempo) and how fast
the environment changes (environment tempo).
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ProsT framework

For given te [0, T], ProST framework computes K*, {t{,t;,..,t;. }, then
{m;, Tty ey wt;*} into two components

@ Time optimizer

@ Future policy optimizer
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Figure 3: ProST framework
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Future policy optimizer

For given ty, tx11, it computes a near-optimal policy of tx.1 at time {4

Consider two function classes F and G such that F: 0% — O and
G:SxAxO - RxA(S), where w e N. Then, for f,) € F and g, € G, we
define MDP forecaster at time tx as (g o f) ) : 0" xS x A - R x A(S).

Estimate the future MDP model and optimize.
o At t=t,
@ During te (tx, tys1)
Qo 6£_I§+1) = f(k)({é}(k—wﬁ-l,k))
Q (R (s a), Py (ls; @) = 8a (s: 3, 6kr1)
Q (1) « M) = (S, A H, Plisry, Ry, )

"] At t :tk+]_
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Time optimizer
Strategy: A is a minimizer of the dynamic regret's upper bound
@ Analysis on finite space |S|,|A| < oo - ProST-T
Theorem (ProST-T dynamic regret R)
Let uff = SIS T oV (s, 2 V) and T = TG [ |, where
is a data-dependent error. For a given p € (0,1), the dynamic regret of the

forecasted policies {7**)} .1 of ProST-T is upper bounded with
probability at least 1 — p/2 as follows:

R ({FE D ko1, K)) < Ry + Ry

where Ry =18 /(1 -~) = 8+Cy - VK =1, Ry =Cy[Ax]-(K-1), and
Cp, Cy[Ax] are some functions of p, Ay, respectively.

@ MR, « Forecasting model error < B(A) (rate of environment's change)
e MRy < Policy optimization error « A, (rate of agent’s adaption)
o A« strikes a balance between R, and Ry,
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A bounds for sublinear R

A’ should satisfy sublinear dynamic regret to K
@ 0 : approximation gap
@ T : entropy regularization parameter

@ 7 : learning rate

Proposition (A, bounds for sublinear 2R/))

A total step H is given by MDP. For a number € > 0 such that

H = Q (log ((Tmax V fmax)/€)), we choose 8, T,n to satisfy

0=0(e), T=(¢/log|A|) and n < (1 -7) [T, where Trax and rmay are the
maximum reward of the forecasted model and the maximum reward of the
environment, respectively. Define Ny:={n | n > niT log (M) ,n €N}, where
Cy is a constant. Then Ry <4e(K - 1) for all A, e Ny,.

v
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R, < Forecasting model error < B(A;)

SW-LSE : Sliding window regularized LSE

Theorem (Dynamic regret R, when f = SW-LSE)

For given p € (0,1), if the exploration bonus constant 8 and regularization

parameter \ satisfy 3 = Q(|S|H+/log (H/p)), A >1, then the R, is bounded
with probability 1 — p,

1 H
R, < C[B(A)]- w+ Ce- —|og(1+ XW)
w

where C/[B(Ax)] = (1/(1=7) + H) - B.(Az) + (1 + Hemax )7/ (1 =) - Bo(Ar),
and Cy is a constant on the order of O(K).

v
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A, bounds for sublinear R,

Proposition (A, bounds for sublinear %))

Denote B(1) as the environment tempo when A, =1, which is a summation
over all time steps. Assume that the environment satisfies

B/ (1) + Bp(1)Fmax/(1 =) = o(K) and we choose
w=0((K-1)22/(C[B(A)])??). Define the set N, to be

{n| n< K, neN}. Then R, is upper-bounded as

% = O(G[B(AN]Y (K -1)**\/log (K-1)/G[B(A)])) and also
satisfies a sublinear upper bound, provided that A, € N;.
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A% strikes a balance between R, and Ry

@ R, upperbound is increasing on a interval N; n Ny,

@ Ry upperbound is decreasing on a interval N; n Ny

Theorem (Suboptimal tempo A%)

Let kgny = (r Vv ap)2 GI[B(1)], kagent =log (1/(1 =n7))Ci(K - 1)(y +2).
Consider three cases: casel: o, v ap, =0, case2: a, Vv o, =1, case3:
O<a,vap<lora,va,>1. Then A’ depends on the environment'’s drifting
constants as follows:

o Casel: AZ =T.
o Case2: A; = |0g1_n7 (kEnv/kAgent) +1.

o (Case3: AL =exp (—W[ MD provided that the parameters are

" max (o)1
chosen so that kygent = (1 —17)Kgno-

v
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Performance

Benchmark methods
o MBPO : state of the art model-based policy optimization.

@ Pro-OLS : policy optimization algorithm that predicts future V.

@ ONPG : adaptive algorithm that fine-tunes the policy on current data.
e FTRL : adaptive algorithm that maximizes the performance on all

previous data.

Table 1: Average reward returns

Speed  B(G) Swimmer-v2 Halfcheetah-v2 Hopper-v2
ProOLS ONPG FTML MBPO ProST-G Pro-OLS ONPG FTML MBPO ProST-G Pro-OLS ONPG FTML MBPO ProST-G
1 16.14 -0.40 -0.26 -0.08 -0.08 0.57 -83.79 -85.33 -85.17 -24.89 -19.69 98.38 95.39 97.18 92.88 92.77
2 3215 020 -012 014 001 104  -8379 8563 -86.46 2219 -20.21 9878  97.34 99.02 9655 9813
3 4786 013 005 -015 -064 152 8327 -8507 -8626 -2165 -21.04 97.70 9818 9860 9508  100.42
4 6314 -022 -009 011 -004 201  -8292 -8437 -8511 -21.40 -19.55 09889 9743 07.04 07.86  100.68
5 7788 -023 -042 027 010 281  -8473 8542 -87.02 -20.50 2052  O7.63  99.64 99.40 96.86  102.48
A 834 146 210 237 008 057  -7667 -85.38 -83.83 -4067 83.74 10472 11897 11521 10029 11136
B 468 179 072 -120 019 020  -8046 -86.96 -85.50 -20.28  76.56  80.83 13123 11000 10029 127.74

*Whole training procedure is in Appendix
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Ablation study
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Figure 4: (a) Optimal A}. (b-1) Different forecaster f (ARIMA, SA). (b-2) The
Mean squared Error (MSE) model loss of four ProST-G with different
forecasters(ARIMA and three SA) and the MBPO. x-axis are all episodes.
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