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Overlooked issue: Time synchronization

Figure 1: Conventional Non-stationary RL environment

Key observation: In reality, environmental changes occur over wall-clock
time (t) rather than episode progress (k).

Existing works: episode k → collect data & train policy → episode k + 1.
In reality: time tk → spend ∆t for collecting data & training → time
tk+1 = tk +∆t.
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Remove time synchronization

Figure 2: Different training time makes agent encounters different environment

In time-desynchorzied environment, the agent should choose when to
interact (t1, t2, ..., tK) additional to how many times to interact (K)
The choice of interaction times (t1, t2, ..., tK ) significantly impacts the
suboptimality gap of the policy.
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Contribution

We propose a Proactively Synchronizing Tempo (ProST) framework that
computes suboptimal {t1, t2, ..., tK}(= {t}1∶K).
ProST framwork computes suboptimal {t}1∶K by minimizing the upper
bound of its performance metric, dynamic regret.

One interesting property is that we show suboptimal {t}1∶K strikes a
balance between the policy training time (agent tempo) and how fast
the environment changes (environment tempo).
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ProsT framework

For given t ∈ [0,T ], ProST framework computes K∗, {t∗1 , t∗2 , .., t∗K∗}, then
{πt∗1

, πt∗2
, .., πt∗

K∗
} into two components

Time optimizer

Future policy optimizer

Figure 3: ProST framework
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Future policy optimizer

For given tk , tk+1, it computes a near-optimal policy of tk+1 at time tk

Definition (MDP forecaster g ○ f )

Consider two function classes F and G such that F ∶ Ow → O and
G ∶ S ×A ×O → R ×∆(S), where w ∈ N. Then, for f(k) ∈ F and g(k) ∈ G , we
define MDP forecaster at time tk as (g ○ f )(k) ∶ Ow × S ×A → R ×∆(S).

Estimate the future MDP model and optimize.

At t =tk
During t ∈ (tk , tk+1)

1 ô(k+1) = f(k)({õ}(k−w+1,k))
2 (R̂(k+1)(s, a), P̂(k+1)(⋅∣s, a)) = g(k)(s, a, ôk+1)
3 π̂(k+1) ← M̂(k+1) = ⟨S,A,H, P̂(k+1), R̂(k+1), γ⟩

At t =tk+1

Hyunin Lee (UCB) Tempo Adaptation 6 / 13



Time optimizer

Strategy: ∆∗π is a minimizer of the dynamic regret’s upper bound

Analysis on finite space ∣S∣, ∣A∣ < ∞ → ProST-T

Theorem (ProST-T dynamic regret R)

Let ιKH = ∑
K−1
k=1 ∑H−1

h=0 ι
(k+1)
h (s(k+1)h , a

(k+1)
h ) and ῑK

∞
∶= ∑K−1

k=1 ∣∣ῑk+1∞ ∣∣∞, where ιKH
is a data-dependent error. For a given p ∈ (0,1), the dynamic regret of the
forecasted policies {π̂(k+1)}1∶K−1 of ProST-T is upper bounded with
probability at least 1 − p/2 as follows:

R ({π̂(k+1)}1∶K−1,K)) ≤RI +RII

where RI = ῑK∞/(1 − γ) − ιKH+Cp ⋅
√
K − 1, RII = CII [∆π] ⋅ (K − 1), and

Cp,CII [∆π] are some functions of p, ∆π, respectively.

RI ← Forecasting model error ← B(∆π) (rate of environment’s change)

RII ← Policy optimization error ← ∆π (rate of agent’s adaption)

∆∗π strikes a balance between RI and RII
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∆π bounds for sublinear RII

∆∗π should satisfy sublinear dynamic regret to K

δ : approximation gap

τ : entropy regularization parameter

η : learning rate

Proposition (∆π bounds for sublinear RII )

A total step H is given by MDP. For a number ϵ > 0 such that
H = Ω (log ((r̂max ∨ rmax)/ϵ)), we choose δ, τ, η to satisfy
δ = O (ϵ) , τ = Ω (ϵ/ log ∣A∣) and η ≤ (1 − γ) /τ , where r̂max and rmax are the
maximum reward of the forecasted model and the maximum reward of the
environment, respectively. Define NII ∶={n ∣ n > 1

ητ
log (C1(γ+2)

ϵ
) ,n ∈ N}, where

C1 is a constant. Then RII ≤ 4ϵ(K − 1) for all ∆π ∈ NII .
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RI ← Forecasting model error ← B(∆π)

SW-LSE : Sliding window regularized LSE

Theorem (Dynamic regret RI when f = SW-LSE)

For given p ∈ (0,1), if the exploration bonus constant β and regularization

parameter λ satisfy β = Ω(∣S∣H
√
log (H/p)), λ ≥ 1, then the RI is bounded

with probability 1 − p,

RI ≤ CI [B(∆π)] ⋅w + Ck ⋅
√

1

w
log (1 + H

λ
w)

where CI [B(∆π)] = (1/(1 − γ) +H) ⋅Br(∆π)+ (1+Hr̂max)γ/(1−γ) ⋅Bp(∆π),
and Ck is a constant on the order of O(K).
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∆π bounds for sublinear RI

Proposition (∆π bounds for sublinear RI )

Denote B(1) as the environment tempo when ∆π = 1, which is a summation
over all time steps. Assume that the environment satisfies
Br(1) +Bp(1)r̂max/(1 − γ) = o(K) and we choose
w = O((K − 1)2/3/(CI [B(∆π)])2/3). Define the set NI to be
{n ∣ n < K , n ∈ N}. Then RI is upper-bounded as

RI = O (CI [B(∆π)]1/3 (K − 1)2/3
√
log ((K − 1)/CI [B(∆π)])) and also

satisfies a sublinear upper bound, provided that ∆π ∈ NI .
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∆∗π strikes a balance between RI and RII

RI upperbound is increasing on a interval NI ∩NII

RII upperbound is decreasing on a interval NI ∩NII

Theorem (Suboptimal tempo ∆∗π)

Let kEnv = (αr ∨ αp)2 CI [B(1)], kAgent = log (1/(1 − ητ))C1(K − 1)(γ + 2).
Consider three cases: case1: αr ∨ αp = 0, case2: αr ∨ αp = 1, case3:
0 < αr ∨αp < 1 or αr ∨αp > 1. Then ∆∗π depends on the environment’s drifting
constants as follows:

Case1: ∆∗π = T.

Case2: ∆∗π = log1−ηγ (kEnv/kAgent) + 1.

Case3: ∆∗π = exp (−W [−
log (1−ητ)

max (αr ,αp)−1
]), provided that the parameters are

chosen so that kAgent = (1 − ητ)kEnv.
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Performance

Benchmark methods

MBPO : state of the art model-based policy optimization.

Pro-OLS : policy optimization algorithm that predicts future V .

ONPG : adaptive algorithm that fine-tunes the policy on current data.

FTRL : adaptive algorithm that maximizes the performance on all
previous data.

Table 1: Average reward returns

Speed B(G) Swimmer-v2 Halfcheetah-v2 Hopper-v2

Pro-OLS ONPG FTML MBPO ProST-G Pro-OLS ONPG FTML MBPO ProST-G Pro-OLS ONPG FTML MBPO ProST-G

1 16.14 -0.40 -0.26 -0.08 -0.08 0.57 -83.79 -85.33 -85.17 -24.89 -19.69 98.38 95.39 97.18 92.88 92.77
2 32.15 0.20 -0.12 0.14 -0.01 1.04 -83.79 -85.63 -86.46 -22.19 -20.21 98.78 97.34 99.02 96.55 98.13
3 47.86 -0.13 0.05 -0.15 -0.64 1.52 -83.27 -85.97 -86.26 -21.65 -21.04 97.70 98.18 98.60 95.08 100.42
4 63.14 -0.22 -0.09 -0.11 -0.04 2.01 -82.92 -84.37 -85.11 -21.40 -19.55 98.89 97.43 97.94 97.86 100.68
5 77.88 -0.23 -0.42 -0.27 0.10 2.81 -84.73 -85.42 -87.02 -20.50 -20.52 97.63 99.64 99.40 96.86 102.48
A 8.34 1.46 2.10 2.37 -0.08 0.57 -76.67 -85.38 -83.83 -40.67 83.74 104.72 118.97 115.21 100.29 111.36
B 4.68 1.79 -0.72 -1.20 0.19 0.20 -80.46 -86.96 -85.59 -29.28 76.56 80.83 131.23 110.09 100.29 127.74

*Whole training procedure is in Appendix
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Ablation study

Figure 4: (a) Optimal ∆∗π. (b-1) Different forecaster f (ARIMA, SA). (b-2) The
Mean squared Error (MSE) model loss of four ProST-G with different
forecasters(ARIMA and three SA) and the MBPO. x-axis are all episodes.
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