Joint processing of linguistic properties in brains and language
models

Subba Reddy Oota Manish Gupta Mariya Toneva

2 : O™
lreia ~ == Microsoft R

SSSSSSSSSSSSSSSSSSSSSSS



Language models (LMs) predict brain activity evoked by complex
language (e.g. listening a story) to an impressive degree

Language model
g — 000 ~ 1. Learn linear function
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2. Test on held-out data
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Brain alignment of a LM = how similar its representations are to a human brain’s

Once upon a

Jain and Huth. Incorporating context into language encoding models for fMRI. (NeurlPS 2018)
Toneva and Wehbe. Interpreting and improving natural-language processing (in machines) with natural language-processing
(in the brain). (NeurlPS 2019)



Language models (LMs) predict brain activity evoked by complex
language (e.g. listening a story) to an impressive degree

1.5
.g 1.0
5 0.5 ‘ ‘ \ |
~ 0.0 [iv ’ “ \‘ . \ “”'4"““'\ ‘» JH
S —0.5
2 —hel — Wi(X)
= —1.5 s I
—2.0L_ , , . , .
0 50 100 150 200 250
Time (s)

Brain alignment of a LM = Why do language models have better brain alignment? What are the reasons?



Language models (LMs) are trained to predict missing words
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Surface Syntactic Semantic

Layer SentLen WC TreeDepth  TopConst  BShift Tense SubjNum  ObjNum SOMO CoordInv

(Surface) (Surface) ~ (Syntactic)  (Syntactic)  (Syntactic) (Semantic) (Semantic) (Semantic)  (Semantic)  (Semantic)
1 93.9 (2.0) 249 (24.8) 359 (6.1) 63.6 (9.0) 50.3(0.3) 82.2(184) 77.6(10.2) 76.7(26.3) 499(-0.1) 53.9(3.9)
2 9 (3. . . 40.6 (11.3)  71.3(16.1) 55.8(5.8) 859(23.5) 825(15.3) 80.6(17.1) 53.8(4.4) 58.5(8.5)
3 96.2 (3.9) 66.5(66.0)f 39.7(10.4) 71.5(18.5) 64.9(149) 86.6(23.8) 82.0(14.6) 80.3(16.6) 55.8(5.9) 59.3(9.3)
4 04.2 (2.3) 69.8(69.6)] 39.4(10.8) 71.3(18.3) 744(24.5) 87.6(25.2) 81.9(15.0) 81.4(19.1) 59.0(8.9) 58.1(8.1)
5 92.0 (0.5) 69.2 (69.0) R 3 ) 8 J 4)  89.5(26.7 85.8 (19.4 81.2(18.6 60.2 (10.3 64.1(14.1
6 88.4 (-3.0) 63.5(63.4) 83.3(36.6) 82.9(32.9) 88.1(21.9) 82.0(20.1) 60.7(10.2)
7 83.7 (-1.7) 56.9 (56.7) 84.1 (39.5) 83.0(32.9) 87.4(22.2) 822(21.1) 61.6(11.7)
8 82.9 (-8.1) 51.1(51.0) 84.0(39.5) 83.9(33.9) 87.5(22.2) 81.2(19.7) 62.1(12.2)
9 80.1(-11.1)  47.9(47.8) ; 83.1(39.8 87.0 (37.1 87.6(22.9) 81.8(20.5) 63.4(13.4)
10 77.0(-14.0) 43.4(43.2) 38.1(9.9) 81.7(39.8)  86.7(36.7) 87.1(22.6) 80.5(19.9) 63.3(12.7)
11 73.9(-17.0) 428 42.7) 36.3(7.9) 80.3(39.1) 86.8 (36.8) 85.7(21.9) 78.9(18.6) 64.4(14.5)
12 09.5(-21.4)  49.1(49.0) 34.7(6.9) 76.5(37.2) 86.4(36.4) 84.0(20.2) 78.7(184)  65.2(15.3)

BERT composes a hierarchy of linguistic signals ranging from surface to semantic features.




The strongest alignment with high-level language brain
regions has consistently been observed in middle layers

mean voxel prediction accuracy

Across several types of large NLP systems, best alignment with fMRI in middle layers
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Toneva et al. 2019
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What are the reasons for this observed brain alignment?

Investigate via a perturbation approach
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Does the removal of a linguistic property affects the alignment between
language model and the brain across all layers?



Result-1

Average across all the layers
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Removal of each linguistic property leads to a
significant decrease in brain alignment on
average across layers.
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Result-1
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Greatest impact on brain alignment in
the middle layers
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Result-1

Which linguistic properties have the most influence on the trend of brain alignment across BERT
layers?



Result-2

Corr,,. (A probing accuracy,,. , A brain alignment,_,)

Tasks AG | ATL | PTL | IFG |IFGOrb | MFG | PCC | dmPFC || Whole Brain
Word Length 0.261 | 0.264 [ 0.220 | 0.355 | 0.129 [0.319 | 0.143 [ 0.100 0.216
Synt actic TreeDepth 0.109

TopConstituents A 42 I S ; . 0.459

Semantic Ohjcct Numbcr . . . 0.503

ROI-Level Analysis

Syntactic properties have the largest effect on the trend of brain alignment across model layers



Qualitative Analysis: Effect of each linguistic property

effect of surface property

effect of syntactlo property

effeot of semantlc property

Removal of Word Length

TopConstituent property is more localized to the canonical language regions in the left

Removal of TopConstituents

Removal of Object Number

hemisphere and is more distributed in the right hemisphere.
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Conclusions for neuro-Al research field

1. Al-engineering:
guide linguistic feature selection,
facilitate improved transfer learning,
help in the development of cognitively plausible Al architectures

2. Computational modeling in Neuroscience
enables cognitive neuroscientists to have more control over using language
models as model organisms of language processing

3. Model interpretability
the addition of linguistic features by our approach can further increase the
model interpretability using brain signals (Toneva & Wehbe 2019)
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