

Optimal Transport-Guided Conditional Score-Based Diffusion Model

Xiang Gu, Liwei Yang, Jian Sun and Zongben Xu

School of Mathematics and Statistics

Xi'an Jiaotong University

xianggu@stu.xjtu.edu.cn,

jiansun@xjtu.edu.cn

1. Background

• Conditional Score-Based Diffusion Model (Conditional SBDM) for Paired Data

Paired condition data (x) and target data (y)

Forward Stochastic Differential Equation (SDE):

Denoising score matching:

$$\mathcal{J}_{\text{DSM}}(\theta) = \mathbb{E}_t w_t \mathbb{E}_{\mathbf{y}_0 \sim q} \mathbb{E}_{\mathbf{y}_t \sim p_{t|0}(\mathbf{y}_t|\mathbf{y}_0)} \left\| s_{\theta}(\mathbf{y}_t; \mathbf{x}_{\text{cond}}(\mathbf{y}_0), t) - \nabla_{\mathbf{y}_t} \log p_{t|0}(\mathbf{y}_t|\mathbf{y}_0) \right\|_2^2$$

Reverse SDE:

$$\mathbf{d}\mathbf{y}_{t} = [f(\mathbf{y}_{t}, t) - g^{2}(t)s_{\theta}(\mathbf{y}_{t}; \mathbf{x}, t)]\mathbf{d}t + g(t)\mathbf{d}\overline{\mathbf{w}}$$

$$\mathbf{y}_{t}$$

2. Motivations

Why OT-Guided Conditional SBDM?

Insufficient paired data in practical applications

Paired

Unpaired

Partially paired

- Main challenges:
 - Lacking coupling relationship of data
 - Unclear formulation for SBDM

3. Contributions

- Optimal transport-guided Conditional Score-Based Diffusion Model (Conditional SBDM) for unpaired data.
- An approach to realize large-scale optimal transport based on diffusion model.
- Applications in unpaired super-resolution and semi-paired image-to-image translation.

For the first challenge, we build coupling relationship using unsupervised OT and semi-supervised OT for unpaired and partially paired settings, respectively.

STATE OF THE PARTY OF THE PARTY

4. OT-Guided Conditional SBDM

L₂-Regularized Large-Scale Optimal Transport

$$\min_{\pi \in \Gamma} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \pi} c(\mathbf{x}, \mathbf{y}) + \epsilon \chi^2(\pi \| p \times q) \qquad \min_{\tilde{\pi} \in \tilde{\Gamma}} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim m \otimes \tilde{\pi}} g(\mathbf{x}, \mathbf{y}) + \epsilon \chi^2(m \otimes \tilde{\pi} \| p \times q).$$
Unsupervised OT (Seguy et al. 18)
$$\sup_{\tilde{\pi} \in \tilde{\Gamma}} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim m \otimes \tilde{\pi}} g(\mathbf{x}, \mathbf{y}) + \epsilon \chi^2(m \otimes \tilde{\pi} \| p \times q).$$

Unified duality:

$$\max_{u,v} \mathbb{E}_{\mathbf{x} \sim p} u(\mathbf{x}) + \mathbb{E}_{\mathbf{y} \sim q} v(\mathbf{y}) - \frac{1}{4\epsilon} \mathbb{E}_{\mathbf{x} \sim p, \mathbf{y} \sim q} I(\mathbf{x}, \mathbf{y}) \left(u(\mathbf{x}) + v(\mathbf{y}) - \xi(\mathbf{x}, \mathbf{y}) \right)_{+}^{2}$$
 (6)

For unsupervised OT, $I(\mathbf{x}, \mathbf{y}) = 1$ and $\xi(\mathbf{x}, \mathbf{y}) = c(\mathbf{x}, \mathbf{y})$

For semi-supervised OT, $I(\mathbf{x}, \mathbf{y}) = m(\mathbf{x}, \mathbf{y})$ and $\xi(\mathbf{x}, \mathbf{y}) = g(\mathbf{x}, \mathbf{y})$

Guiding function: $g(\mathbf{x}, \mathbf{y}) = d(R_{\mathbf{x}}^s, R_{\mathbf{y}}^t)$ $R_{\mathbf{x},k}^s = \frac{\exp(-c(\mathbf{x}, \mathbf{x}_k)/\tau)}{\sum_{l=1}^K \exp(-c(\mathbf{x}, \mathbf{x}_l)/\tau)}, R_{\mathbf{y},k}^t = \frac{\exp(-c(\mathbf{y}, \mathbf{y}_k)/\tau)}{\sum_{l=1}^K \exp(-c(\mathbf{y}, \mathbf{y}_l)/\tau)}$

Solving OT:

u, v are represented by neural networks u_{ω} , v_{ω} with parameters ω that are trained by mini-batch-based stochastic optimization algorithms using the loss function (6), using parameters $\widehat{\omega}$ after training, the estimate of optimal transport plan is

$$\hat{\pi}(\mathbf{x}, \mathbf{y}) = H(\mathbf{x}, \mathbf{y}) p(\mathbf{x}) q(\mathbf{y}), \text{ where } H(\mathbf{x}, \mathbf{y}) = \frac{1}{2\epsilon} I(\mathbf{x}, \mathbf{y}) \left(u_{\hat{\omega}}(\mathbf{x}) + v_{\hat{\omega}}(\mathbf{y}) - \xi(\mathbf{x}, \mathbf{y}) \right)_{+}$$
(7)

Seguy V., et al., Large-Scale Optimal Transport and Mapping Estimation, ICLR, 2018. Xiang Gu, Yucheng Yang, Wei Zeng, Jian Sun, Zongben Xu. Keypoint-Guided Optimal Transport. JMLR. 2023, under review.

For the second challenge, we first provide a reformulation of paired setting and extend it for unpaired and partially paired settings.

Reformulation of paired setting:

Proposition 1. Let $C(\mathbf{x}, \mathbf{y}) = \frac{1}{p(\mathbf{x})} \delta(\mathbf{x} - \mathbf{x}_{cond}(\mathbf{y}))$ where δ is the Dirac delta function, then $\mathcal{J}_{DSM}(\theta)$ in Eq. (1) can be reformulated as

$$\mathcal{J}_{\text{DSM}}(\theta) = \mathbb{E}_t w_t \mathbb{E}_{\mathbf{x} \sim p} \mathbb{E}_{\mathbf{y} \sim q} \mathcal{C}(\mathbf{x}, \mathbf{y}) \mathbb{E}_{\mathbf{y}_t \sim p_{t|0}(\mathbf{y}_t|\mathbf{y})} \left\| s_{\theta}(\mathbf{y}_t; \mathbf{x}, t) - \nabla_{\mathbf{y}_t} \log p_{t|0}(\mathbf{y}_t|\mathbf{y}) \right\|_2^2.$$
(8)

Furthermore, $\gamma(\mathbf{x}, \mathbf{y}) = \mathcal{C}(\mathbf{x}, \mathbf{y})p(\mathbf{x})q(\mathbf{y})$ is a joint distribution for marginal distributions p and q.

Observations from Proposition 1:

- The coupling relationship of x, y is explicitly modeled in C(x, y)
- $\gamma(\mathbf{x}, \mathbf{y})$ is closely related to the transport plan of L_2 -regularized OT

Transport plan

$$\hat{\pi}(\mathbf{x}, \mathbf{y}) = H(\mathbf{x}, \mathbf{y}) p(\mathbf{x}) q(\mathbf{y})$$

Inspiring us to extend Eq. (8) to partially paired or unpaired settings by replacing C(x, y) with H(x, y)!!!

Formulation for unpaired and partially paired settings

$$\mathcal{J}_{\text{CDSM}}(\theta) = \mathbb{E}_t w_t \mathbb{E}_{\mathbf{x} \sim p} \mathbb{E}_{\mathbf{y} \sim q} H(\mathbf{x}, \mathbf{y}) \mathbb{E}_{\mathbf{y}_t \sim p_{t|0}(\mathbf{y}_t|\mathbf{y})} \left\| s_{\theta}(\mathbf{y}_t; \mathbf{x}, t) - \nabla_{\mathbf{y}_t} \log p_{t|0}(\mathbf{y}_t|\mathbf{y}) \right\|_2^2$$
(9)

Training the Conditional Score-based Model s_{θ}

- Standard minibatch-based training is less effective due to sparsity of $H(\mathbf{x}, \mathbf{y})$.
- We present the following Resampling-by-compatibility strategy.

Resampling-by-compatibility:

Sample generation by reverse SDE

$$d\mathbf{y}_t = \left[f(\mathbf{y}_t, t) - g(t)^2 s_{\hat{\theta}}(\mathbf{y}_t; \mathbf{x}, t) \right] dt + g(t) d\bar{\mathbf{w}},$$

Understanding OT-Guided Conditional SBDM

Theorem 1. For $\mathbf{x} \sim p$, we define the forward SDE $d\mathbf{y}_t = f(\mathbf{y}_t, t) dt + g(t) d\mathbf{w}$ with $\mathbf{y}_0 \sim \hat{\pi}(\cdot|\mathbf{x})$ and $t \in [0, T]$, where f, g, T are given in Sect. 2.1. Let $p_t(\mathbf{y}_t|\mathbf{x})$ be the corresponding distribution of \mathbf{y}_t and $\mathcal{J}_{\mathrm{CSM}}(\theta) = \mathbb{E}_t w_t \mathbb{E}_{\mathbf{x} \sim p} \mathbb{E}_{\mathbf{y}_t \sim p_t(\mathbf{y}_t|\mathbf{x})} \|s_{\theta}(\mathbf{y}_t; \mathbf{x}, t) - \nabla_{\mathbf{y}_t} \log p_t(\mathbf{y}_t|\mathbf{x})\|_2^2$, then we have $\nabla_{\theta} \mathcal{J}_{\mathrm{CDSM}}(\theta) = \nabla_{\theta} \mathcal{J}_{\mathrm{CSM}}(\theta)$.

Workflow: (1) Building coupling $\hat{\pi}$ using OT; (2) Sampling clean sample \mathbf{y} from $\hat{\pi}(\mathbf{y}|\mathbf{x})$; (3) Adding noise by forward SDE to train s_{θ} (4) Generating samples from $\hat{\pi}(\mathbf{y}|\mathbf{x})$ by reverse SDE.

OTCS Realizing Data Transport for OT

- $\pi(\mathbf{x}, \mathbf{y})$ models the density function value of \mathbf{x} , \mathbf{y} rather than the transported sample of \mathbf{x}
- How to transport source sample **x** to the target domain is known to be a challenge

Our proposed OTCS provides an diffusion-based approach to transport x to target domain by sampling from optimal conditional transport plan $\pi(\cdot | \mathbf{x})$, with a theoretical guarantee.

No.

4. OT-Guided Conditional SBDM

OTCS Realizing Data Transport for OT

Notations:

 $p^{sde}(\cdot | \mathbf{x})$: distribution of samples generated by OTCS $\pi(\cdot | \mathbf{x})$: true conditional optimal transport plan of L_2 -regularized OT

 $u_{\widehat{\omega}}$, $v_{\widehat{\omega}}$ is near to the saddle point so that gradient norm is minimized.

Training loss as in Theorem 1.

Theorem 2 shows that OTCS can generate samples from $\pi(\cdot | \mathbf{x})$.

4.1 Experiments on unpaired super-resolution

Results:

Degenerated images

Translated images

4.1 Application unpaired super-resolution

Table 1: Quantitative results for unpaired super-resolution on Celeba and semi-paired I2I on Animal images and Digits. The best and second best are respectively bolded and underlined.

Method	Method Type	Celeba		Animal images		Digits	
		FID↓	SSIM ↑	FID ↓	Acc (%) ↑	FID ↓	Acc (%) ↑
W2GAN [33]	OT	48.83	0.7169	118.45	33.56	97.06	29.13
OT-ICNN [29]	OT	33.26	0.8904	148.29	38.44	50.33	10.84
OTM [30]	OT	22.93	0.8302	69.27	33.11	18.67	9.48
NOT [34]	OT	13.65	0.9157	156.07	28.44	23.90	15.72
KNOT [31]	OT	5.95	0.8887	118.26	27.33	3.18	9.25
ReFlow [36]	Flow	70.69	0.4544	56.04	29.33	138.59	11.57
EGSDE [17]	Diffusion	11.49	0.3835	52.11	29.33	34.72	11.78
DDIB [35]	Diffusion	11.35	0.1275	28.45	32.44	9.47	9.15
TCR [14]	-	1-	-	34.61	40.44	6.90	36.21
SCONES [19]	OT, Diffusion	15.46	0.1042	25.24	35.33	6.68	10.37
OTCS (ours)	OT, Diffusion	1.77	0.9313	13.68	96.44	5.12	67.42

4.2 Experiments on semi-paired image-to-image translation

Task: Translate cat/fox/leopard images to lion/tiger/wolf using guidance of three image pairs, without class label

(a) Animal images (256×256)

4.2 Experiments on semi-paired image-to-image translation

Task: Translate MNIST to Chinese-MNIST using guidance of ten image pairs, without class label

Paired images

Source and translated images

(b) Digits (28×28)

4.2 Experiments on semi-paired image-to-image translation

Table 1: Quantitative results for unpaired super-resolution on Celeba and semi-paired I2I on Animal images and Digits. The best and second best are respectively bolded and underlined.

Method	Method Type	Celeba		Animal images		Digits	
		FID↓	SSIM ↑	FID↓	Acc (%) ↑	$FID \downarrow$	Acc (%) ↑
W2GAN [33]	OT	48.83	0.7169	118.45	33.56	97.06	29.13
OT-ICNN [29]	OT	33.26	0.8904	148.29	38.44	50.33	10.84
OTM [30]	OT	22.93	0.8302	69.27	33.11	18.67	9.48
NOT [34]	OT	13.65	0.9157	156.07	28.44	23.90	15.72
KNOT [31]	OT	5.95	0.8887	118.26	27.33	3.18	9.25
ReFlow [36]	Flow	70.69	0.4544	56.04	29.33	138.59	11.57
EGSDE [17]	Diffusion	11.49	0.3835	52.11	29.33	34.72	11.78
DDIB [35]	Diffusion	11.35	0.1275	28.45	32.44	9.47	9.15
TCR [14]	-		_	34.61	40.44	6.90	36.21
SCONES [19]	OT, Diffusion	15.46	0.1042	25.24	35.33	6.68	10.37
OTCS (ours)	OT, Diffusion	1.77	0.9313	13.68	96.44	5.12	67.42

Thanks for your attention!

Code: https://github.com/XJTU-XGU/OTCS