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FeCAM: Exploiting the Heterogeneity of Class Distributions in
Exemplar-Free Continual Learning
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Exemplar-Free Continual Learning:

=> Class-Incremental Learning (CIL): The objective is to learn new classes in a continual fashion without
forgetting the knowledge learned from previous tasks.

=> Exemplar-based methods store samples (or exemplars) from previous tasks to use them in training
during new tasks. This helps to reduce catastrophic forgetting of old classes.

=>  We explore the more challenging exemplar-free setting in this work where we do not use any samples
from previous tasks.

=> Similar to recent works [1], we train the feature extractor in the first task and then freeze it during the

new tasks.

[1] Grégoire Petit, Adrian Popescu, Hugo Schindler, David Picard, and Bertrand Delezoide. Fetril: Feature translation for exemplar-free class-incremental
learning. In Winter Conference on Applications of Computer Vision (WACV), 2023.
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FeCAM: Feature Covariance-Aware Metric

=> We explore prototypical networks for CIL, which generate new class prototypes using the frozen
feature extractor and classify the features based on the Euclidean distance to the prototypes
known as NCM (Nearest Class Mean) classifier.

=> We analyze that classification based on Euclidean metrics is successful for jointly trained
features.

=> However, when learning from non-stationary data, we observe that the Euclidean metric is
suboptimal and that feature distributions are heterogeneous.

=> To address this challenge, we revisit the anisotropic Mahalanobis distance for CIL.
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Mahalanobis Distance

The Mahalanobis distance is generally used to measure the distance between a data sample x and
a distribution D. Given the distribution has a mean representation y and an invertible covariance
matrix ¥ € RP*P | then the squared Mahalanobis distance can be expressed as:

Dur(@,p) = (x — p) ' 7z — p) (1)

where X! is the inverse of the covariance matrix.

In euclidean space, 3 = I, where [ is an identity matrix. Thus, in euclidean space, we consider
identical variance along all dimensions and ignore the positive and negative correlations between the
variables.
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Mahalanobis Distance

Feature Space

Original samples Prototype Contour lines

(a) Euclidean Distance  (b) Mahalanobis Distance

Contour lines indicate points at equal distance from the prototype
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When did we start using the euclidean metric?

e Before the emergence of deep neural networks, Mahalanobis distance [2] was used in the NCM
classifier to assign an image to the class with the closest mean:

y* = ar%mir; Dulz,py)y, Duylz,py) = (z — M'y)TM(x — py) (1)
y: gooey

where Y is the number of classes, z, 1, € RP, class mean y,, = ﬁ Y x, T and M 1is a positive
definite matrix. They learned a low-rank matrix M = WTW where W € R™*L with m < D.

[2] Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. Distance-based image classification: Generalizing to new classes at
near-zero cost. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2013.
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However, with the shift towards deep feature representations, Guerriero et al. [3] assert that the highly
non-linear nature of learned representations with a deep convolutional network eliminate the need of
learning the Mahalanobis metric M and the isotropic Euclidean distance can be used as follows:

y* = argmin De(8(a). ). Delb(w).my) = (9(2) — )" (B2) — ) @)
y=1,...,

NCM classifier with euclidean distance is commonly used in continual learning following iCaRL [4].

[3] Samantha Guerriero, Barbara Caputo, and Thomas Mensink. Deepncm: Deep nearest class mean classifiers. International Conference on

Learning Representations Workshop (ICLR-W), 2018.
[4] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental classifier and representation

learning. In Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
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Figure 1: Illustration of feature representations in CIL settings. In Joint Training (a), deep neural
networks learn good isotropic spherical representations [16] and thus the Euclidean metric can be
used effectively. However, it is challenging to learn isotropic representations of both old and new
classes in CIL settings. When the model is too stable in (b), it is unable to learn good spherical
representations of new classes and when it is too plastic in (c), it learns spherical representations
of new classes but loses the spherical representations of old classes. Thus, it is suboptimal to use
the isotropic euclidean distance. We propose FeCAM in (d) which models the feature covariance
relations using Mahalanobis metric and learns better non-linear decision boundaries for new classes.
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Figure 3: (a) Singular values comparison for old and new classes, (b-c) Visualization of features for
old classes and new classes by t-SNE, where the colors of points indicate the corresponding classes.
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[3] Samantha Guerriero, Barbara Caputo, and Thomas Mensink. Deepncm: Deep nearest class mean classifiers. International Conference on
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Joint Training: Isotropic euclidean metric makes sense [2]
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Covariance Shrinkage

=> When the number of samples available for a class is less than the number of feature dimensions,
we obtain a low-rank matrix and the covariance matrix X is not invertible.
=> This is a serious problem since the feature dimensions are very high (512 or 768).

=> In order to obtain a full-rank invertible covariance matrix, we perform covariance shrinkage.

3 = S+ nWil + 12Ve(1 - I), 8)

where V] is the average diagonal variance, V5 is the average off-diagonal covariance of 3 and [ is an
identity matrix.
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Correlation Normalization of Covariance Matrices

=> The covariance matrix obtained for each class will have different levels of scaling and variances
along different dimensions.

=> Particularly, due to the notable shift in feature distributions between the old and new classes, the
variances are much higher for the new classes.

=> In order to make the multiple covariance matrices comparable, we perform a correlation matrix
normalization on all the covariance matrices make their diagonal elements equal to 1.

Ey(..-:.]) = (fy(‘i)(fy(j)’ ,,()

where o, (7) and o, (j) refers to the standard deviations along the dimensions ¢ and j respectively.
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Tukey’s Ladder of Powers Transformation

=> To reduce the skewness of distributions and make them more Gaussian-like.
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Algorithm 1 FeCAM

Require: Training data (D, D, .., D), Test data for evaluation (X7{, X§, .., X), Model ¢
1: fortaskt € [1,2,..,T] do

9:

10:
11:
12:
13:

14:
15:
16:

& = @ ek

if f == 1 then
Train ¢ on Dy = (X4,Y7) > Train the feature extractor
end if
fory € Y; do
Py = |—X1—y—| b i X, o(x) > Compute the prototypes
gb(j(y) = Tukeys(d(Xy)) > Tukeys transformation Eq. (9)
3, = Cov(¢(Xy)) > Compute the covariance matrices
(3y)s = Shrinkage(X,) > Apply covariance shrinkage Eq. (8)
(2y), = Normalization((Z,)s) > Apply correlation normalization Eq. (7)
end for

for z € X7 do
y* = argmin Dy (¢(z), py) where
y:l,...,Yt

- _ T, ~
Dum(o(x), py) = (d(z) — Ny)T(Zy)s (¢(x) — fiy)
> Compute the squared mahalanobis distance to prototypes
end for

17: end for
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Many-shot CIL Experiments

CIL Method CIFAR-100 TinyImageNet ImageNet-Subset
=5 T=10 T=20 =5 r=100 T7T=20 7=5 =10 T=20
EWC [24] 24.5 21.2 15.9 18.8 15.8 12.4 - 20.4 -
LwF-MC [43] 45.9 274 20.1 29.1 23.1 17.4 - 31.2 -
DeeSIL [2] 60.0 50.6 38.1 49.8 439 34.1 67.9 60.1 50.5
MUC [31] 49.4 30.2 21.3 32.6 26.6 219 - 35.1 -
SDC [67] 56.8 57.0 58.9 - - - - 61.2 -
PASS [78] 63.5 61.8 58.1 49.6 47.3 42.1 64.4 61.8 31.3
IL2A [77] 66.0 60.3 57.9 473 44.7 40.0 - - -
SSRE [79] 65.9 65.0 61.7 50.4 48.9 48.2 - 67.7 -
FeTrIL* [42] 67.6 66.6 63.5 554 543 53.0 131 119 69.1
Eucl-NCM 64.8 64.6 61.5 54.1 53.8 53.6 2.2 72.0 68.4
FeCAM (ours) - 11 68.8 68.6 67.4 56.0 55.9 355 75.8 75.6 735
FeCAM (ours) - 33, 70.9 70.8 69.4 59.6 594 59.3 78.3 78.2 75.1
Upper Bound 79.2 79.2 79.2 66.1 66.1 66.1 81.2 81.2 81.2
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Comparison with exemplar-based methods

CIFAR-100 (T=5) ImageNet-Subset (T =5)

CIL Method
#P Ex. Avg. Acc Last Acc Avg. Acc Last Acc

1CaRL [43] YEETD o 65.4 56.3 62.6 93:7
PODNet [15] 11.17 67.8 57.6 73.8 62.9
Coil [76] ¥EYT & - - 59.8 43.4
WA [70] 1117 69.9 61.5 65.8 56.6
BiC [63] 11.17 « 66.1 o UKD 66.4 499
FOSTER [59] 11.17 ¢ 67.9 60.2 69.9 63.1
DER [65] 67.02 vV 73.2 66.2 77.6 71.1
MEMO [74] 53.14 - - 76.7 70.2
FeCAM(ours) 11.17 X 709 62.1 78.3 70.9
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Experiments with ViT models pre-trained on ImageNet-21k

Split-Cifar100 Split-ImageNet-R CoRe50
CIL Method Avg Acc Avg Acc Test Acc
FT-frozen 17.7 39.5 -
FT 33.6 28.9 -
EWC [24] 47.0 35.0 74.8
LwF [29] 60.7 38.5 793
L2P [62] 83.8 61.6 78.3
NCM [21] 83.7 55.7 85.4
FeCAM (ours) 85.7 63.7 89.9

Joint 90.9 79.1 -
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Accuracy of each incremental task for Few-shot CIL
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Ablation experiments

CIFAR-100 (T=5)

ImageNet-Subset (T=5)

Distance Cov. Matrix ~ Tukey Eq. (9)  Shrinkage Eq. (8)  Norm. Eq. (7) IastAce  AvgAcc Tast Acc Avg Atc
Euclidean - X - ! 51.6 64.8 60.0 72.2
Euclidean - b . ; 54.4 66.6 66.2 73.6

Mahalanobis Full X X X 14.6 29.7 33.5 45.1
Mahalanobis Full v X X 20.6 36.2 54.0 65.6
Mahalanobis Full X & X 44.6 59.3 39.9 56.9
Mahalanobis Full & s X 52.1 62.8 56.5 67.3
Mahalanobis Diagonal & ¥ X 55.2 66.9 64.0 74.1
Mahalanobis Full X v v 554 65.9 58.1 68.5
Mahalanobis Full b & v 62.1 70.9 70.9 78.3

=> Time complexity on ImageNet-Subset using one Nvidia RTX 6000 for 5 new tasks:
€ The fastest method FeTrIL takes 44 minutes for all the new tasks while FeCAM takes only

6 minutes with no training.
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