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Why Multi-Object Representation Learning?

• Human understanding of the world relies on objects as compositional building 
blocks [Kahneman et al., 1992]
• Emulating this in machine learning algorithms through object-centric 

representations can improve [Greff et al., 2020]:
• Robustness
• Sample Efficiency
• Generalization to out-of-domain distributions
• Interpretability
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Limitations of Current Approaches
• Recent work utilizes a generative approach which optimizes pixel-based 

reconstruction to learn object-centric representations [Yuan et al., 2022]
• Pixel-based reconstruction prioritizes pixel accuracy over object discovery and 

functional feature extraction, which may lead to failure in:
• Discovering objects [Locatello et al., 2020]
• Obtaining useful object features such as position and shape [Kabra et al., 2019]
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Michele De Vita: Introduction to Object Centric Learning

https://mik3dev.medium.com/introduction-to-object-centric-learning-2d081ee686dc


Key Contributions
• We propose a framework which leverages on feature connectivity and design two 

object-centric regularization terms
• We demonstrate that proposed approach:

• Outperforms SOTA methods in discovering multiple objects from simulated, real-world, 
complex texture and common object images in a fine-grained manner without supervision

• Attains sample efficiency and is generalizable to out-of-domain images
• Learned object representations accurately predict key object properties in downstream tasks
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OC-Net: Overview
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OC-Net: Object Discovery
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Uniformly sample a 
pixel embedding yet to 
be assigned to an 
object

Use Dijkstra’s algorithm 
to compute the 
shortest distance of the 
sampled pixel 
embedding to all other 
embeddings, where 
distance between a pair 
of neighbouring pixels 
is defined as:

Consider pixel embeddings 
to be part of the same 
object as the sampled pixel 
embedding according to a 
threshold

Obtain the object representation 
by taking the sum of the extracted 
mask information and the average 
of pixel embeddings



OC-Net: Object Discovery
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OC-Net: Object-Centric Regularization
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We design two object-centric regularization 
terms to improve the quality of the learned 
object representations for downstream 
generalization and object discovery



OC-Net: Object-Centric Regularization
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• Lsep maximizes the distance between object 
representations in the latent space, encouraging 
the model to learn distinct and non-overlapping 
object representations:

• Lent minimizes the correlation between 
dimensions in the latent space Z, achieving more 
disentangled object representations which are 
easier to manipulate and analyze:
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Performance Study



Experiment Setup: Datasets
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Experiments on Quality of Discovered Objects
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Experiments on Quality of Discovered Objects
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Experiments on Quality of Discovered Objects
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Experiments on Quality of Discovered Objects
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Experiments on Sample Efficiency
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• One obstacle to unsupervised object discovery is the availability of a sufficiently 
large number of suitable training samples. 
• Sample efficiency refers to a model’s ability to learn effectively from a relatively 

small number of examples.



Experiments on Model Generalizability
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• In this set of experiments, we compare the generalization ability of OC-Net with 
the baselines by training the models on Multi-dSprites and testing them on the 
other datasets.



Prediction based on Learned Object 
Representation
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• One characteristic of an effective object-centric representation is its ability to 
encode object properties such as color, position and shape [Schölkopf et al., 2021]. 



OC-Net
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• We have described a framework called OC-Net that learns object-centric representations 
in a fine-grained manner without supervision. 

• From the results of experiments conducted on simulated, real-world, complex texture 
and common object images, we have demonstrated the superior quality of the object 
representations over current state-of-the-art. Moreover, we have highlighted the sample 
efficiency and generalizability of OC-Net. 

• Finally, we have shown how the discovered object representations can be used to 
predict object properties in a downstream task, indicating its potential use for other 
computer vision applications where samples and ground truth labels are limited.
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Thank you


