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Why Multi-Object Representation Learning?

* Human understanding of the world relies on objects as compositional building
blocks [Kahneman et al., 1992]

* Emulating this in machine learning algorithms through object-centric
representations can improve [Greff et al., 2020]:
* Robustness

* Sample Efficiency
* Generalization to out-of-domain distributions

* Interpretability
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Limitations of Current Approaches

* Recent work utilizes a generative approach which optimizes pixel-based
reconstruction to learn object-centric representations [Yuan et al., 2022]

* Pixel-based reconstruction prioritizes pixel accuracy over object discovery and
functional feature extraction, which may lead to failure in:
* Discovering objects [Locatello et al., 2020]
* Obtaining useful object features such as position and shape [Kabra et al., 2019]

Objects



https://mik3dev.medium.com/introduction-to-object-centric-learning-2d081ee686dc
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Key Contributions

* We propose a framework which leverages on feature connectivity and design two
object-centric regularization terms

* We demonstrate that proposed approach:

e QOutperforms SOTA methods in discovering multiple objects from simulated, real-world,
complex texture and common object images in a fine-grained manner without supervision

* Attains sample efficiency and is generalizable to out-of-domain images
* Learned object representations accurately predict key object properties in downstream tasks
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OC-Net: Overview
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OC-Net: Object Discovery
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Obtain the object representation

D

sim(pm, Pr) = J Z(Pm[d] — pk[d])?

d=1




OC-Net: Object Discovery
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OC-Net: Object-Centric Regularization

We design two object-centric regularization
terms to improve the quality of the learned
object representations for downstream
generalization and object discovery
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OC-Net: Object-Centric Regularization

Theorem 3.1. Let Y be the matrix of labels of the training samples and Pz be the projection matrix
of Z:
Pz =1-7Z"(22)'Z, 5)

where 1 is the identity matrix, (.) is the pseudoinverse and Yz = ZZ' is the unnormalized
covariance matrix of Z. Let ||.||p be the Frobenius norm. Then, the following relation holds:

oz < |[Pz||r||Y]|F. (6)

* L, maximizes the distance between object
representations in the latent space, encouraging
the model to learn distinct and non-overlapping
object representations:

1 D
Losp = D ;max(O, 1—+og+T1)
L., minimizes the correlation between
dimensions in the latent space Z, achieving more
disentangled object representations which are
easier to manipulate and analyze:

1 ..
Lent = m;EZ[%J]
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Experiment Setup: Datasets
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Dataset

Type

Ground Truth

Image Size

Multi-dSprites
Tetrominoes-NM
SVHN
IDRi1D
CLEVRTEX
CLEVRTEX-OOD
Flowers
Birds
COCO

Simulated
Simulated
Real-World
Real-World
Complex Texture
Complex Texture
Common Object
Common Object
Common Object

Pixel Mask
Pixel Mask

Bounding Box

Pixel Mask
Pixel Mask
Pixel Mask
Pixel Mask
Pixel Mask
Pixel Mask

64 x 64
35 X 35
Varied

4288 x 2848

128 x 128
128 x 128
128 x 128
128 x 128
128 x 128
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Experiments on Quality of Discovered Objects

Table 2: Evaluation scores for the discovered foreground objects.
(a) Simulated datasets

Multi-dSprites Tetrominoes-NM
Method ARI mDice mloU ARI mDice mloU

SLIC 67.9+0.0 78.5+0.0 70.8+=0.0 53.0+0.0 66.1+0.0 53.6+0.0
Felzenszwalb ~ 97.44+0.0 98.6+0.0 95.0+0.0 95.040.0 98.0+0.0 96.9+0.0
Slot Attention  91.34+0.3 45.7+0.7 32.6+0.6 99.8+0.1 41.5+0.8 26.6+0.7

EfficietMORL  85.24+0.5 30.1£+1.3 195+1.1 99.0+1.7 425423 27.6+1.9
GENESIS-V2  85.0+1.3 81.5%+19 722+14 97.6+05 47.1+1.1 31.0+0.8
SLATE 89.5+1.2 825+09 72.6*+1.1 84.5+£15 57.84+0.9 44.3+0.8

SysBinder 72.3+1.2  30.6x1.1 19.6x1.0 90.7+1.7 41.8+1.9 27.0+1.7
BO-QSA 90.4+1.1 91.6x1.1 88.0x1.2 99.34+0.3 409+1.4 25.8+1.2
OC-Net 99.84+0.0 99.5+0.0 99.1£0.0 100.0+:0.0 100.0+£0.0 100.0+0.0

(b) Real-world datasets
SVHN IDRiD

Method ARI mDice mloU ARI mDice mloU

SLIC 53400 50.1+0.0 345400 3224+0.0 12.7+0.0 8.84+0.0
Felzenszwalb  31.7+0.0 51.6+0.0 39.8+0.0 14.7+0.0 19.0+0.0 15.4+0.0
Slot Attention  38.9+1.5 51.7+1.8 36.7+1.7 28.7+1.1 8.6%+1.7 5.0+1.6

EfficientMORL  32.2+1.7 49.2+2.0 34.0+1.8 16.8+1.5 11.1+2.7 7.0£1.8
GENESIS-V2  28.6+1.4 60.84+1.5 459+14 183+1.6 8.8+1.9 54+1.6
SLATE 21.24+1.2 57.0+£13 41.7+1.5 35.6+2.1 8.1£1.2 4.7+1.8
SysBinder 158+1.6 49.5+1.9 34.1+1.8 252+1.3 16.6+1.7 11.1+1.8
BO-QSA 243+1.2 62.0+1.6 483+13 27.7+2.0 7.0£1.9 4.5+1.7
OC-Net 39.7+£0.1 64.6+0.1 49.9+0.1 39.0+04 38.1+0.2 31.2+0.2




(c) Complex textures dataset

Method

CLEVRTEX

CLEVRTEX-O0D

ARI

mDice

mloU

ARI

mDice

mloU

SLIC
Felzenszwalb
Slot Attention

EfficientMORL
GENESIS-V2
SLATE
SysBinder
BO-QSA
OC-Net

27.4+0.0
57.3+0.0
58.6+1.6
59.5+1.7
65.6+1.8
57.5+1.8
61.4+1.7
70.9+1.9
70.7+0.9

20.0+0.0
33.6+0.0
35.0+1.6
37.7+1.5
36.9+1.4
33.3+1.6
31.3%+1.5
429+1.8
45.1+0.9

13.0+0.0
26.8+0.0
26.7+1.5
31.1+14
304+1.4
24.4+1.5
23.1+1.4
34.7+1.7
37.5+0.7

25.840.0
44.640.0
51.3+1.9
53.9+2.5
67.6+1.6
56.6+1.3
61.0+2.4
66.1+1.3
69.8+0.8

21.740.0
29.640.0
34.1+1.4
322424
34.2+1.5
34.74+2.1
32.3+2.0
42.8+1.4
43.5+0.7

14.0+0.0
23.4+0.0
25.1+1.3
253+2.8
27.6%+1.9
253+1.8
23.8+1.8
33.9+1.3
35.0+0.6

(d) Common objects datasets

Method

Flowers

Dice

IoU

Birds

Dice

IoU

COCO

mDice

mloU

SLIC
Felzenszwalb
Slot Attention

EfficientMORL
GENESIS-V2
SLATE
SysBinder
BO-QSA
OC-Net

30.5+0.0
43.7+0.0
43.0+1.5
59.54+2.1
63.7+2.2
55.6+1.2
45.0+1.8
65.8+1.9
67.2+0.2

18.4+0.0
30.4+0.0
28.6+1.2
45.24+2.2
50.242.2
40.8+1.8
30.8+1.6
51.7+1.9
54.4+0.2

33.1+0.0
34.3+0.0
42.9+2.0
44.0+1.9
41.4+1.7
39.5+1.5
33.7+1.3
44.641.7
47.8+0.2

20.340.0
23.040.0
27.9+1.8
30.8+1.8
27.7£1.5
25.9+1.8
21.14+2.0
30.3£1.5
33.5+0.2

36.2+0.0
36.6+0.0
24.84+2.0
28.4+2.3
25.14+2.1
37.0£1.9
18.4+1.6
349+1.1
48.24+0.2

244x0.0
27.1+0.0
15.0%+1.7
18.9+2.1
16.1x1.7
24418
10.7x1.4
23.6+0.9
35.6+0.2

BE &

Nati

US | Computing

Experiments on Quality of Discovered Objects
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Experiments on Quality of Discovered Objects
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Figure 2: Visualization of discovered objects.
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Experiments on Sample Efficiency

* One obstacle to unsupervised object discovery is the availability of a sufficiently
large number of suitable training samples.

» Sample efficiency refers to a model’s ability to learn effectively from a relatively
small number of examples.
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Figure 3: mloU scores vs decreasing number of training samples.
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Experiments on Model Generalizability

* In this set of experiments, we compare the generalization ability of OC-Net with
the baselines by training the models on Multi-dSprites and testing them on the

other datasets.

Table 3: mloU scores for model generalizability after training on Multi-dSprites.

Method

Tetrominoes-NM

SVHN

IDRiD

CLEVRTEX CLEVRTEX-OOD

Slot Attention
EfficientMORL
GENESIS-V2
SLATE
SysBinder
BO-QSA
OC-Net

21.8+3.5
21.2+3.8
42.9+4.9
51.4x1.6
28.5+1.8
41.8+1.8

100.0+0.0

19.54+3.8
23.4+2.8
31.1+£2.8
21.1+£2.0
23.8+1.1
24.3+2.0
47.5+0.5

7.5£2.5
6.5+2.6
8.5+2.4
10.0x1.7
13.9+1.8
4.0£1.5
29.1+0.5

12.2+2.2
12.7+3.2
21.9+1.6
12.7+£2.2
10.6x1.5
244114
31.7+0.6

12.3+2.2
15.2+2.0
21.3£2.5
129+1.8
11.6+=1.9
22.8+2.5
31.3+0.6
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Prediction based on Learned Object
Representation

* One characteristic of an effective object-centric representation is its ability to
encode object properties such as color, position and shape [Scholkopf et al., 2021].

Table 5: R? scores for object property prediction on simulated datasets

Multi-dSprites Tetrominoes-NM

Method

Color

Position

Shape

Color

Position

Shape

Slot Attention
EfficientMORL
GENESIS-V2

SLATE

SysBinder

BO-QSA
OC-Net

722112
86.516.2
78.1£7.5
87.5+0.7
73.6t1.0
96.3+1.6
98.0+0.6

96.8+0.1
95.8+0.1
97.1+0.7
90.6+4.4
69.3+3.4
97.4+0.1
98.31+0.1

38.2+0.0
61.7+0.0
75.8+0.0
31.7+0.0
33.3+0.0
75.2+0.0
78.1+0.0

86.516.5
94.9+3.2
88.1+5.8
85.5+3.9
97.9+0.6
98.1+0.7

100.0+0.0

98.7+0.6
97.9+0.7
94.612.6
89.6+0.7
77.8£2.7
98.9+0.2
99.41-0.1

36.31+0.0
68.51+0.0
37.9+0.0
10.540.0
19.91+0.0
52.54+0.0
98.71+0.0
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OC-Net

* We have described a framework called OC-Net that learns object-centric representations
in a fine-grained manner without supervision.

From the results of experiments conducted on simulated, real-world, complex texture
and common object images, we have demonstrated the superior quality of the object

re]Eresentations over current state-of-the-art. Moreover, we have highlighted the sample
efficiency and generalizability of OC-Net.

Finally, we have shown how the discovered object representations can be used to
predict object properties in a downstream task, indicating its potential use for other
computer vision applications where samples and ground truth labels are limited.
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