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Overview

 Information Pursuit (IP) is
a classical greedy
algorithm for active
testing.

« |P predicts a variable by
sequential asking queries
about an input in order of
information gain.

« Difficult to implement in
high dimensions.
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Orthogonal Matching
Pursuit (OMP)? is a
classical greedy algorithm
for sparse coding.

OMP encodes a signal by
sequentially selecting
dictionary atoms in order
of correlation gain.

Easy to implement in high
dimensions.

R JOHNS HOPKINS

MATHEMATICAL INSTITUTE

applications to wavelet decomposition. In Asilomar Conference on Signals, Systems and Computers, pages 40—44, 1993. for DATA SCIENCE



Contributions

« We formally prove a connection between IP and OMP.

— OMP can be seen as a special case of IP (modulo a normalization
factor).

« We propose a computationally simpler alternative to IP for
explainable Al that is based on OMP.
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Primer: IP and OMP
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IP vs. OMP

* In IP, the queries and the prediction are all random variables.

* In OMP, the signal and dictionary atoms are all vectors (not
random).

« Contribution 1: We show that despite these differences, one
can obtain the OMP algorithm (up to a normalization factor)
from IP by carefully selecting the set of queries and prediction
variables.
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OMP from IP

- Take each query @' € Q as a random projection of dictionary
atom d' onto a standard normal Z, that is, Q" := (d*, Z).

« Take the prediction variable Y to be a random projection of
the observed signal x onto Z, thatis Y := (z, Z).

« Theorem (Informal): The query selection step for IP with this
choice of Q and Y coincides with the atom selection step in
OMP up to a normalization factor.
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IP-OMP

« More precisely, IP proceeds as follows,
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 Main distinction with OMP is this normalization factor—we
call this IP-derived algorithm IP-OMP.

« We empirically show that IP-OMP and OMP have similar
success rates for sparse code recovery using random
Gaussian dictionaries.
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IP-OMP for explainable Al (CLIP-IP-OMP)

« Contribution 2: Inspired by recent application for IP to
explainable Al, we propose a simple algorithm using IP-OMP
for the same.

 Modelling assumption: CLIP image embeddings can be
expressed as sparse combinations of CLIP embeddings of
text concepts.

‘ r

-
. + noise
J :
lo |*

\9
@

‘
s
N -

¢: image embedding

~ 7
: text embedding \_'_I

=
Image credit: https.//en.wiktionary.org/wiki/cat#/media/File:Cat03.jpg q;.y JOHNS HOPKINS
MATHEMATICAL INSTITUTE
for DATA SCIENCE


https://en.wiktionary.org/wiki/cat

CLIP-IP-OMP explanations
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Prediction: Tiger

* ldea:
— Construct a dictionary of CLIP text embeddings of semantic concepts.
— Use IP-OMP to sparse-code image embeddings.
— Train a linear classifier to predict class from sparse code.
— Explain predictions via the sparse code and classifier weights.
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More information

Research supported by the Army Research Office under the
Multidisciplinary University Research Initiative contract
WI11NF-17-1-0304, the NSF grant 2031985 and by Simons
Foundation Mathematical and Scientific Foundations of Deep
Learning (MoDL) grant 135615.

Vision Lab @ JHU
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