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Inverse Problems
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« x — underlying signal of interest (Sound Speed Profile)
« y — observables (arrival times observed at receivers)
« F — “Forward” model that maps signal to observables
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Neural Adjoint: Forward Model Surrogate

» Physics-based Forward Model

 Train a Neural Net surrogate model
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Neural Adjoint: Forward Model Surrogate

» Physics-based Forward Model
F:x >y

 Train a Neural Net surrogate model
GQ: X =Y

» Formulate as optimization problem
X = argmin—=|Gg(x) — y|*
x 2

 Solve for iteratively
xktl =k _ gk
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* Descent direction
d* = Jo ()T (Gy(x) — y)
GPU acceleration (Fast!)
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» Physics-based Forward Model
F:x >y

 Train a Neural Net surrogate model
GQ: X =Y

» Formulate as optimization problem
X = argmin=|Gg(x) — y|?
x 2
 Solve for iteratively
xktl =k _ gk

* Descent direction
d* = J; ()T (Ge(x) — y)
Autograd/backprop (cheap)

Gr Georgia
Tech.



Neural Adjoint: Forward Model Surrogate

» Physics-based Forward Model
F:x >y

 Train a Neural Net surrogate model
GQZ X =Y

» Formulate as optimization problem
X = argmin=|Gg(x) — y|?
x 2

 Solve for iteratively
xktl =k _ gk

* Descent direction
d* = J ()T (Ge(x) — y)
Black box: no physics
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PETAL — Embedding Physics
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* Ensemble of cheap approximations of physics based forward model

* Yy = ]F(xref)T(x — Xref) T Vref
y = Aref(x - xref) T Vref
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PETAL

/Embedded Physics\
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« Compute weights via a learned attention module
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PETAL

/Embedded Physics\
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« Take a weighted average over the set of reference models
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Neural Adjoint: Forward Model Surrogate

» Physics-based Forward Model
F:x >y

 Train PETAL surrogate model
GQ: X =Y

 Replace F with Gy
d* = Jo(x)T(Go(x) — y)
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Neural Adjoint: Forward Model Surrogate

» Physics-based Forward Model
F:x >y

 Train PETAL surrogate model
GQ: X =Y

 Replace F with Gy
d* = J(x) " (Gg(x) — y)
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Neural Adjoint: Forward Model Surrogate

» Physics-based Forward Model
F:x >y

 Train PETAL surrogate model
GQ: X =Y

 Replace F with Gy
d* =] ()" (Go(x) = y)
GPU acceleration (Fast!)
Autograd/backprop (cheap)

Embedded Physics via Linearizations
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Experimental Set Up
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Gulf of Mexico Data Forward Model

Data collected from simulations of the Gulf of Mexico

Forward Model: Direct and surface bounce path between source-receiver pairs
Data: Sound Speed Profiles

Observables: Arrival times Gl" %nglgia



Results

Low Variability

Med Variability

High Variability

Avg Tik Avg Tik Avg Tik
Tik 0.647  --- 0.773 --- 0.881 ---
LFM 0.620 0.597 |0.584 0.580 |0.617 0.630
MLP 0.384 0.378 |0.406 0.409 [0.424 0.428
PETAL (Ours) |0.365 0.339 |0.360 0.346 |0.361 0.374

« Tik — Classical Inversion with linearized forward model + Tikhonov

regularization

« LFM — Optimization framework with linearized forward model

« MLP - Neural adjoint optimization framework with generic learned surrogate
 PETAL - Proposed model in neural adjoint optimization framework
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Conclusion

» Introduce the Neural Adjoint method for solving inverse problems
* Introduce a novel architecture that embeds physics into the surrogate
« Demonstrate its efficacy on a ocean acoustic tomography problem
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