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Motivation

Federated Learning (FL) challenges in real-world applications:

s Limited applicability in environments lacking network infrastructures such as robotics and ad-
hoc networks

»  Difficulty in maintaining consistent and reliable connections

»  Change in conditions in dynamic environments with rapidly evolving topologies and ongoing

adaptations
> Limited and constrained communication between central server and clients

s Difference in clients’ data distribution and tasks
» Clients’ data distribution is non-1ID (non-independent and identically distributed)

» Clients perform different tasks
» Lack of generalization of the global model => Model discrepancy
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Contribution

/

Walk Stochastic Alternating Direction Method of Multipliers (RWSADMM):

» Server moves between clients based on a Random Walk (RW) algorithm

Presence of data heterogeneity

>
» A dynamic reachability graph among distributed clients
>

A movable vehicle as the central server
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** To address these FL challenges, we propose a novel and unique FL framework called Random

Mobilized server location

Clients participating in the update
mmmm Clients not participating in the update
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Framework Description

% Clients rely on short-range transmission devices to interact with the movable server

» Communication is possible only within the communication range

» Whenever the server arrives in the communication range of Client i, it and its neighbors participate
in the computation round

* Server navigates using a non-homogeneous Markov Chain Random Walk method

** Probabilistic approach allows for a more effective server obized server ocation
movement and navigation o Cilents ot paicpating n the update
¢ Transition matrix P (k) at time k: %
P
. o S
|[P(k)];j = Pr{ix41 = ilix = j} € [0,1] ~
* u
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Framework Formulation

» Objective: Minimizing the average loss while ensuring local proximity among clients’ local models
% Graph: Dynamic connected graph G = (V, E) with n clients and m edges.
» V ={v,v,,..,0,} isthe set of n clients

» E is the set of m edges, which are created if within the communication range.

o, Tl fix)

S.t. |x- — x]| 1Q¢;, Vie{l,..,n}

s Parameters:
»  x;:local model parameter stored in client i
»  fi(x;): local loss function for client i, potentially non-convex
» €;: Non-consensus relaxation between local neighboring clients, replacing model
consensus requirement in typical FL frameworks
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Framework Formulation

¢ By introducing local proximity model y; stored by the server, the problem is rewritten as:

i=1
min — (X
L fi(x;)

st |1Qy; — Xy | < 1®€;/2, Vie{l,..,n}

¢ Parameters:
> y;:local proximity of N(i)
» Xp()- Concatenated matrix containing models of client set N (i)’s
» N(i): Vertex set containing client i and its neighbors
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Framework Formulation

% By introducing local proximity model y; stored by the server, the problem is rewritten as:

_ =1 Constrained
xlr};ler}l?pﬁ i fi (x;) - problem
s.t. 11®y; — Xnwy| < 1®€;/2, Vie(l,..,n}

@ Augmented Lagrangian Function Lg

1 B 2
Lg(¥V1, X, Z1n) = — [F(X) + X 1{Z 1y — Xy — &) + 5 Zi[|[1®y: — Xy | — &il| ]
% Parameters:
»  [: Barrier parameter
» Z; € R™*P: dual variable
> €= ei/Z
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Framework Formulation

s RWSADMM is derived by integrating RW and stochastic inexact approximation techniques into
ADMM

» At iteration k, server approaches client i;, using RW algorithm
» The clients N (i) participate in the federated update

» The corresponding group of variables, x; , y;,, z;, are updated in a stochastic way by deriving the

solver of each subproblem
X;, = arg r;(un Lg (sz» X, sz
Lk

yi, = arg rg}nn Lg (ylk,XN(lk), zN(lk))
Lk
» Then the Lagrangian multiplier is updated

z;, = zi, +B(|yi, — x| — &)

> yi’k, X, » Z{k: local parameters stored in client i;, at the (k — 1)th iteration
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Framework Formulation

s X-update:
» Driving the solver updating X variable

2
min 1, 00) + (e I, = x4l = ) + S i, =] = e

ﬁ Substituted by first order stochastic approximation

. !/ !/ ! / B I/ 2
mmn lgik(xik’ Si) (Ko = x0,) + (240 |y, — X | — &) + 2 llyz, = x| - Sik”F]

%

One of a few samples , 1 / 1 / /

randomly selected by Xj, =V T B Zj, O sgn(t’) — B sgn(t’) O (sik + gi, (Xik: fik))

clienti 1
. — yl,k + E Sgn(t,) @ (Zl{k — Sik _ glk (ng’ flk))

!

> Signum sgn(.) function extracts the sign of a vector and t; =y; —Xx;,

The stochastic approximation tremendously reduces memory
consumption and computational costs in each computation round
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Framework Formulation

s Y-update:
» Driving the solver updating Y variable

: / ’
min [(ZN(ik)' |1®yUc — XN(ik)l — 8ik> + g |||1®Ylk — XN(ik)| _ 1®£ik”p]

Yiy
|
Vi = ni 2, [xi= (G o) @ sen)]

k jeN(ix)
ﬁ Reducing the communication cost from 0(n) to 0(1)
) 1
Vi, =Yi, T E lxik (B + slk) ©) Sgn(tlk)] [ ( + 81k> O sgn(tlk)]
> Ly = Vi, — Xy,

Substituting y;, through mathematical induction significantly reduces
the communication costs in each computation round
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Framework Formulation

/

s Z-update:
» Driving the solver updating Z variable
I/
zik - Zi + Kﬁ(|1®ywc XN(lk)| slk
k

» Strictly updated following standard ADMM scheme
» Kk coeficient is decayed after each computation round for achieving better convergence
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Algorithm

s Effectiveness
» Convergent
» Dynamic graph

» Heterogeneous data distribution

¢ Efficiency
» Save memory cost

> Save communication cost
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Algorithm 1 RWSADMM

1: Initialization:

Initialize Markov transition matrices {P(0),P(1),..., }.
Initialize {x9}7_, = 0, {z?}",

N

RWSADMM(3,y,):
3: repeat

4. forke0,1,2,...do
5

Client i), receives y;, and updates X, Z, and y using following

equations:

6: end for
k=0.99 x K

7: until the termination condition is TRUE.

RETURN X*, y*

—O,and
— — ') =

z:l

N

Xip = argr’r(l_inLg(y;k,xik,z;k),
ik
Yi, = argr}r’lin Ly, » Xa(in)s Zj\f(ik))’
ik
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Theoretical Guarantees

Convergence Theorem: Suppose the following two
assumptions hold:

1. The objective function f;(x;) is coercive and L-
smooth
2. Random Walk forms an irreducible and

aperiodic Markov Chain with mixing time 7(§) .
(mixing time t(8) (given §>0) is the smallest

integer s.t. ” [P(k)f(a)]ij — nj” < ém”).

For f > 2L?> + L+ 2, it holds that any limit point
(y*, X*,Z*) of the sequence (yk, Xk ZK) generated by
RWSADMM satisfies that (y*,X* Z*) is a stationary
point with probability 1, that is,

1 n
PT(OE;ZV}CL'):l

=1
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%  To prove the convergence, a Lyapunov function is defined: L’é — LB (yk, Xk; Zk)

% (L%)ks0 is non-decreasing and is lower bounded by infimum of £ (inf (f))
B

Convergence Rate Theorem: (Sublinear convergence
rate) With assumptions of convergence theorem and
B >2L?>+L+2, given local models initialized as

Vi(x))=px2= 20, i€{1,..,n}, there exists a
subgradient sequence {g} € 0 L’;; satisfying

C
min Blg*[* < = (L — inf (), VK = 7(8) +2

where C is a constant depending on 3, L, n, and t(6).
Hence, a gradient sublinear convergence is proved.

Sublinear convergence rate is comparable with other
FL frameworks’ convergence rate; while they did not
consider a dynamic environment.

In a convex problem, RWSADMM is provable to
converge with linear convergence rate.
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Communication Complexity: Using the convergence
rate theorem, the communication complexity of
RWSADMM for nonconvex nonsmooth problem is as
follows. To achieve ergodic gradient deviation

E, = minj, E||g"‘||2 < w, VK = 1(8) + 2, itis
sufficient to have

- imf(r) <0 Do —10
K w (1 - AZ(P(k))) 2
% (*)is achieved by taking L and inf (f) as
constants and independent of n and network
structure. A,(P(k)) = max{|4;(P(k))| :
2i(P(k)) # 1} (A as eigenvalue).

< RWSADMM’s communication O(w 1) for K
iterations. Per-FedAvg exhibits a higher
communication complexity O(w~3/2). APFL has
the communication complexity of
0(w~3/*n=3/%), nis total number of clients.
When n is large, APFL's communication
complexity is significantly higher than
RWSADMM.
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Experiments

s Benchmark Datasets: MNIST, Synthetic, and CIFAR10

** Training models: Strongly convex MLR, non-convex MLP, and non-convex CNN

RWSADMM outperforming state-of-the-art FL frameworks with 20 clients for MNIST dataset

MNIST
Frameworks MLR MLP CNN
acc(%) t(s) acc(%) t(s) acc(%) t(s)

FedAvg 03.96 +£0.02 384 | 98.794+0.03 464 | 97.83+0.15 7965

PerAvg 04.374+0.04 472 | 98.90+0.02 608 | 98.97+0.08 7296

pFedMe 05.62 +£0.04 1344 | 99.46+ 0.01 2096 | 99.05+0.06 16623
Ditto 07.37+0.02 828 | 97.79+0.03 1268 | 99.204+£0.11 9820

APFL 02.644+0.03 913 | 97.74+0.02 1598 | 98.58 +0.03 17800
RWSADMM (our method) | 98.63 +0.01 500 | 99.29 +0.02 884 | 99.52+0.04 11570
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Experiments
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Conclusion

/

** Proposed a novel mobile server FL framework called RWSADMM:

» Provably convergent with sublinear convergence rate for non-convex settings
» Reduced memory and computation costs, due to stochasticity

» Outperforming state-of-the-art FL frameworks relative to

* Provably lower communication complexity
* Higher accuracy

\/

** In addition, successfully resolved the challenge of implementing FL in an unreliable network
environment by:

» Reliance on short-range communication of ad-hoc networks with a moving server
» Implementing a dynamic environment and network topology
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