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GANs vs Diffusion Al Lab

— Generator trained by
discriminating true vs fake data.
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» Generator (manifold
learning).

» Close to SOTA performance.
» Harder to optimize.

» Fast inference.
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GANs vs Diffusion
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Diffusion

— Learns to progressively reverse
a data degradation process.
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» No generator (operates on
the data space).

» SOTA performance.

» Easier to optimize.

» Slow inference.
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Particle-Based Framework

» Models make a particle distribution p;

evolve with time ¢.
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Particle-Based Framework Al Lab

» Models make a particle distribution p; S
evolve with time ¢. A 4
» Particles follow a gradient vector field o
Vhy,: ¢ o0
» during inference; %/
¢ Ddata
°p —>Vhp
Definition (Particle Models, PMs)
Ty ~ T = po, day = Vhy, (z) dt,

where t is the inference time.
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Particle-Based Framework Al Lab

» Models make a particle distribution p; S
evolve with time ¢. A 4

» Particles follow a gradient vector field o
Vhy,: * o

» during inference;
» or smoothed during generator training
with loss:

Lo, = —E.p. hy, (géh(z)). ¢ Pdata —Ag (Vhp)

* p = golip-

Definition (Interacting Particle Models, Int-PM:s)

dg@t (Z) - 77[/46& (2)] (Vhpt) dta

where ¢ is the training time of the generator gy, (2).
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A Unifying Framework for GANs and Diffusion Al Lab

Model Generator Flow type Vh,,
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A Unifying Framework for GANs and Diffusion Al Lab

Model Generator Flow type Vh,,

Score-based diffusion models X arV log [pdata N k;;(];%“] — 3,V log pr

Example for NCSN (Song et al., 2019) using Langevin sampling:

dz; = V1og[pdata * k&pr| (@) dt | +v2 AW, |, p
dzy = V1og[pdata * kipr)(x¢) dt | — V log pi () dt |-
——

gen. score

i~ entropy /'

» In diffusion, particles follow a log ratio gradient.
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A Unifying Framework for GANs and Diffusion Al Lab

Model Generator Flow type Vh,,

Score-based diffusion models X arV log [pdam N k;;(é%:] — 3,V log pr

—V(co fp,), where f,, is a

GANs v discriminator between p; and pgata
With gradient descent-ascent and generator loss: min ma 7]
Ly = ]EZNPZ [(C o fp) (gg(z))} . (Goodfellow et al.,
2014)

» In GANs, particles follow the discriminator gradient.

Unifying GANs and Score-Based Diffusion as Generative Particle Models — Jean-Yves Franceschi 3/4



CXITEO

A Unifying Framework for GANs and Diffusion Al Lab

Model Generator Flow type Vh,,

Score-based diffusion models

Score GANs a;Vlog [pdata * k{ig;] — B¢V log p¢

Discriminator Flows
GANs

—V(co fp,), where f,, is a
discriminator between p; and pgata

N x| N X

It is possible to train:
a generator with diffusion (Score GAN);

a GAN without a generator (Discriminator Flow).
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Animated samples:
https://jyfranceschi.fr/publications/gpm/.

Experimental Validation
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