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Traditional INT8 Methods FAIL at Scale

e Emergent outlier dimensions in LLMs’
hidden-states make Post Training
Quantization (PTQ) difficult for
models at scale (> 6B).

e LLM.int8() - fixes performance drop
but is not easily generalizable & no
latency benefit
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Are emerging properties of LLM truly
inherent to scale, or can they be

altered and conditioned by optimization
choices?
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Nurture: Optimization Choices

e Isolate effects of each pre-training optimization choices:
o Control other choices while varying one

o Due to high cost of training at scale - 6B early checkpoint
(75k steps)

o Quantize both hidden-states and weights - measure degradation

Experimental Axes Choices
Weight decay 0.001, 0.01, 0.1
Gradient clipping None, 1
Dropout 0; 0.1, 0.4, 0.8
Half-precision bf16, £fpl6
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Weight Decay

e Vary weight decay with
gradient-clipping turned off

e Want to decouple their effects

e Higher weight decay -. better PTQ
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Gradient Clipping

e Vary gradient-clipping with
weight decay = 0.001

e Want to decouple the effects of
two

e Gradient Clipping - better PTQ
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Dropout

e Only applied to the hidden-states right
before a residual connection

e Not applied to embeddings

e Smaller dropout — better PTQ

e dropout=0.8 has significantly worse
performance before quantization(expected)
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BE16 > FP16

e FP16 - worse PTQ (most significant out of all experimental axis)

e Degradation trends are consistent over time

Half-precision data type: bfl6 vs fpl6
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Validation at Scale

e Q: Do insights at 6B
translate to other scales?

e A: Yes!

Model Degradation
cohere-52B 0.0%
OPT-66B 42%"

* directly taken from Dettmers et al., 2022
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Final Takeaways

e Qutliers at scale are due to nurture rather than nature

e Train with bf16, gradient clipping, higher weight
decay, and low dropout

e Simple INT8 quantization of both hidden-states and
weights is feasible at scale

Email: arash@cohere.com

~ Cohere For Al


mailto:arash@cohere.com

