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Adversarial training: Each training sample is modified by an adversary.
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Main results:

#1. Map \ < ¢ for which they yield the same result.
#2. More parameters than data: abrupt transition into interpolation.

#3. Optimal choice of ¢ independent on noise level.
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The that yield the same result are not necessarily the same, i.e.: § # A
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# 2. Equivalence with minimum norm interpolator
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For 0 € (0, threshold], the minimum-norm interpolator is the solution to adversarial
training.

Relevance

Connect adversarial training with double descent and benign overfitting
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> />-adv. attacks and ridge regression.
» Generalization to other loss functions
» Connection to robust regression and v/Lasso.



