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Antônio H. Ribeiro1,∗, Dave Zachariah1,
Francis Bach2, Thomas B. Schon1

1Uppsala University, Sweden
2INRIA / PSL research university, France

∗Presenting

NeurIPS

2023



Adversarial attacks

Explaining and Harnessing Adversarial Examples
I. J. Goodfellow, J. Shlens, C. Szegedy

ICLR (2015)



Adversarial attacks

Explaining and Harnessing Adversarial Examples
I. J. Goodfellow, J. Shlens, C. Szegedy

ICLR (2015)



Adversarial attacks

Explaining and Harnessing Adversarial Examples
I. J. Goodfellow, J. Shlens, C. Szegedy

ICLR (2015)



Adversarial attacks

Explaining and Harnessing Adversarial Examples
I. J. Goodfellow, J. Shlens, C. Szegedy

ICLR (2015)



Adversarial training: Each training sample is modified by an adversary.
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▶ Linear regression:

min
β
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(y i − β⊤x i )
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Similarities with Lasso
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Main results:

#1. Map λ ↔ δ for which they yield the same result.

#2. More parameters than data: abrupt transition into interpolation.

#3. Optimal choice of δ independent on noise level.
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# 1. Equivalence with Lasso

Map λ ↔ δ for which they yield the same result.
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The that yield the same result are not necessarily the same, i.e.: δ ̸= λ



# 2. More parameters than data

Lasso: transition only in the limit

λ → 0+ ⇒ Mean square error → 0

Adversarial training:

δ ∈ (0, threshold] ⇒ Mean square error = 0
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# 2. Equivalence with minimum norm interpolator

For δ ∈ (0, threshold], the minimum-norm interpolator is the solution to adversarial
training.



# 2. Equivalence with minimum norm interpolator

For δ ∈ (0, threshold], the minimum-norm interpolator is the solution to adversarial
training.

Relevance

Connect adversarial training with double descent and benign overfitting



# 3. Invariance to noise levels

To obtain near-oracle performance.

▶ Lasso:
λ ∝ σ

√
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▶ ℓ∞-adversarial attack :
δ ∝

√
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Data model

y = x⊤β∗︸ ︷︷ ︸
signal

+ σ︸︷︷︸
noise std.

ε.
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▶ ℓ2-adv. attacks and ridge regression.

▶ Generalization to other loss functions

▶ Connection to robust regression and
√
Lasso.
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