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Background & Motivation

« Traditional adversarial training & models
— Includes attacks & defenses
— target: evaluate & improve robustness
— limitation: trade-off between accuracy and robustness

« Ensemble adversarial defense
— assumed to defend better adversarial attacks
— rigorous understanding remains unclear



MANCHESTER
1824

The University of Manchester

Error Theory for Ensemble Adversarial Defense

Assumption 4.2 (MLP Requirement). Suppose a C-class L-layer MLP h : R? — [0, 1]¢ expressed
iteratively by

a¥(x) =x. (6)
am(x) =0 (W(Z)a(l_l)(x)) A=1,2,...,L—1, (7)
all)(x) = WEa(l=U(x) = z(x), (8)

h(x) = softmax(z(x)). 9)

where o(-) is the activation function applied element-wise, the representation vector z(x) € R”

returned by the L-th layer is fed into the prediction layer building upon the softmax function. Let
w__(qill__sl denote the network weight connecting the s;-th neuron in the /-th layer and the s;,1-th

neuron in the (I 4+ 1)-th layer for [ € {1,2..., L}. Define a column vector p'¥) with its i-th element

HalL—1)
. o o k dag (x) (L
computed from the neural network weights and activation derivatives, as ps = d ey wt)
ST, T L.ST,

fork = 1,2,...dand i = 1,2,...C, also a matrix P}, = Zi:l p®™p®’ and its factorization

P, = MhME with a full-rank factor matrix My,. For constants \, B > 0, suppose the following
holds for h:

1. Its cross-entropy loss curvature measured by Eq. satisfies Ap(x,0) < A.

2. The factor matrix satisfies | My, ||, < By and HMLHQ < B, where || - ||o denotes the vector

induced [>-norm for matrix.
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Error Theory for Ensemble Adversarial Defense

Definition 4.3 (Ambiguous Pair). Given a dataset D = {(x;,v;)},—, where x; € X and y; € [C],
an ambiguous pair contains two examples a = ((x;,v: ), (X;,y;)) satisfying y; # y; and

1
JB\/C' (512 - g)

Assumption 4.4 (Acceptable Classifier). Suppose an acceptable classifier f : R¢ — [0, 1] does
not perform poorly on the ambiguous example set G(D) associated with its ambiguous pair set A(D)
and control variable .J. This means that, for any pair (x;,X;,v:,y;) € A(D), the following holds:

1x: — x5, <

(10)

1. With a probability p > 42.5%, the classifier can correctly classify one example from the pair
by a sufficiently large predicted score and misclassify the other example by a sufficiently
small score, e.g., fy, (xi) > 0.5+ L and f,, (x;) < 0.5+ >

2. For any example from the pair, e.g., (X, yi), and it is classified to class y;, then it has small

. . ]._ rq'". i .
predicted scores for wrong classes, i.e., f.(x;) < gj—i{lxj for ¢ # y;. y;.
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Error Theory for Ensemble Adversarial Defense

Theorem 4.1. Suppose h.,h" h' € H : X — [0, 1] are C-class L-layer MLPs satisfying Assump-
tion|4.2 Given a dataset D = {(xi,y:)},_,, construct an ambiguous pair set A(D) by Definition

4.3 Assume h,h', h' are acceptable classifiers for A(D) by Assumption 4.4, Given a classifier
feH: X — RC and a dataset D, assess its classification error by 0-1 loss, as

Ro/l(D f) = |11)| Z 1 [fyx(x) < max fc(x)] , (4)

CF£Yx

where 1|true| = 1 while 1|false| = 0. For an ensemble h'"Y of two base MLPs h" and h' through

. : : 0.1 0,1 :
either an average or a max combiner, i.e., h!%Y = %(hU + h') or h{"! = max(h', h'), it has a
lower empirical 0-1 loss than a single MLP for classifying ambiguous examples, such as

Eoap)Eno nten {R0/1 (@ h” 1))} < Eoeap)Enen {7/\30/1 (G:h)} - (5)
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IGAT. Improving Ensemble Mechanism

 Distributing Global Adversarial Examples
2N—T‘x(h7’)
by probabilities: Pi = Z i1

i€[N]
— 1,,(+): rank in descending order the predicted scores.

« Regularization Against Misclassification

- 1 N _ - C _ N _ 1
Lr (X, yx) = =001 (¢ (W' (x).....h" (%)) , yx) log (1 — Hax max h; (X))

— penalize the most incorrect prediction.
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IGAT. Improving Ensemble Mechanism

* Final objective

N
{Illgl}i}&l E(x, o)~ (Xoy) [LE(X yx)] + 0 ) B ki gy [fon(h'(x), )]
i— —v_/ .
original ensemble loss \ =1 y

T
added global adversarial loss

T 'SE(){,yx)w(X,y)u(f{,jr) LR (X, yx)],

Ny -
W

added misclassification regularization
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Experiment results

Table 1: Comparison of classification accuracies in percentage reported on natural images and adversarial
examples generated by different attack algorithms under L .-norm perturbation strength £ = 8/255. The results
are averaged over five independent runs. The best performance 1s highlighted in bold, the 2nd best underlined.

Max Combiner (%)

Natural PGD CW SH AA

| Average Combiner (%)
| Natural  PGD CW SH AA

|
|

| TRS| 83.15 12.32  10.32 39.21 9.10| 82.67 11.89 10.78 37.12 T7.66
|

% | GAL | 80.85 41.72 41.20 5494 36.76 80.65 3195 27.80 50.68 9.26
E SoE 82.19 38.54 37.59 59.69 32.68 82.36 3251 2388 41.04 18.37
1GATSsoE 81.05 40.58 39.65 57.91 34.50 81.19 31.98 24.01 40.67 19.65
CLDL 84.15 45.32 41.81 55.90 37.04 83.69 39.34 32,80 51.63 15.30 X ) ) ) )
iGATcLpL ]5 05 45.45 4200 5822 37.14 83.73 40.84 3455 5170 17.03 Table 3: Result§ ot_ablarlon studies based on 1GATADP using CI_FAR-]O ut_lder the PGD attack. The results are
— averaged over five independent runs. The best performance 1s highlighted in bold.
DVERGE 85.12 41.39 4340 57.33 39.20 84.89 41.13 39.70 5490 35.15 -
iGATpYVERGE ﬁ 4253 4450 57.77 39.48 85.27 204 4070 54.79 ﬁ | Opposite Distributing  Random Distributing  Hard Distributing 5 =0 iGATspp
ADP | 8214 39.63 3890 52.93 3553 | 8008 36.62 34.60 47.69 27.72 RIS na i b s M
iGAT app 84.96 46.27 4490 58.90 40.36 80.72 39.37 35.00 48.36 29.83 - - - - .
o | TRS | 58.18 10.32  10.12 15.78 6.32 | 57.21 9.98 9.23 14.21 4.34
é | GAL | 61.72 22.04 21.60 31.97 18.01 | 59.39 19.30 13.60 24.73 10.36
<T
= CLDL 58.09 18.47 18.01 29.33 15.52 55.5 18.89 13.07 22.14 4.51
o i1GAT e pL 59.63 18.78 1820 29.49 14.36 5

5.51
76.91 20.76 14.09 2043 5.20
2.62

SoE 62.60 20.54  19.60 36.35 15.90 62.6 16.00 11.40 24.25 8.62
1GATsoE 63.19 21.89 19.70 35.60 16.16 63.02 16.02 11.45 2377 8.95

ADP 60.46 20.97 2055 30.26 17.37 56.20 17.86  13.70 21.40 10.03
1GAT app 60.17 22.23 20.75 30.46 17.88 56.29 17.89 14.10 2147 10.09

DVERGE 63.09 20.04 20.01 32.74 17.27 61.20 20.08 15.30 27.18 12.09
1GAThvErGE 63.14 23.20 2250 33.56 18.59 61.54 20.38 17.80 27.88 13.89
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Future Work

« Research model architectures beyond MLPs and the average/max
combiners

« Large-scale datasets, e.g., ImageNet
* Generalize the theory to more than two base classifiers
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Thanks!
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