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Are ChatGPT and AlphaCode going
toreplace programmers?

OpenAl and DeepMind systems can now produce meaningful lines of code, but software
engineers shouldn’t switch careers quite yet.
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AlphaFold Experiment
r.m.s.d.qs = 0.8A; TM-score = 0.93
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Interpreting Transformers
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e Lack formal understanding.
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Interpreting Transformers

Question: Can we reliably interpret the algorithm implemented
by a Transformer by looking at individual components?

“Individual” 1) attention patterns and 2) single weight components.
“myopic methods”

Answer: Transformers may not be interpretable by
inspecting individual parts.

Approach: theoretical and empirical investigation on Dyck.



Background: the Dyck language

Definition: the language of balanced parentheses vatid - [J([0)]
invalid  [)(]L(])

e Depth of a bracket = number of unclosed brackets before it.

Task: predict the type and openness of the next bracket.

® Most naturally processed by maintaining a stack.

[llustrations:
Stack [ https://www.geeksforgeeks.org/

Step 5:

Closing bracket. Check top of stack is
str [ L)€ ] ) YT | same Eind or not

Question: how do Transformers process this Dyck language?



How do Transformers process Dyck?

Prior work [Ebrahimi etal, Yao etal]: Transformers learn Dyck
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e Predict by focusing on the last unclosed bracket. 2N
stack-like attention [Yao et.al]

Our results: Transformers learn s Sm
diverse attention patterns on Dyck. e
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e All models reach high accuracy.

our findings: diverse attentions



Transformer model architecture

e [ —thlayer of a Transformer
attention pattern
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e Full model: predicts the next token

T(X) = Whxgap lfL (fL—l(”'f1(X)))]
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stack-like attention
[Yao et.al]
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empirical diverse attention



Training objective: next token prediction
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o Prefix: ([
[

e Continuation: (

\ 04 label y =
[ 0.3 l
0.2
prediction y = ]( 0.05 > loss at that position (¥, y)
END 0.03 l
START 0.02 training loss ). [(y, y) for all positions
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Uninterpretable Attention Patterns

Minimal first layer: the outputs { et 4 } only depend on the bracket type ¢
and depth d.

« Sequence: | ] {

<
e {eq} type[depthl, type]depthO, type {depth 1, type < depth 2, ...

Thm 1. Any 2-layer Transformer with a min first layer need to
satisfy the balance condition* to be optimal on Dyck:

.
(3[,d — e],d—l) WYTW(ey g, — e54,) = 0

Intuition: embeddings for matching pairs of brackets should cancel out.
e similar to the pumping lemma for regular languages.




Uninterpretable Attention Patterns

Thm 1 (Balance condition)
T
(epa — €1.a-1) WETWeeyq, — e54,) = 0

Remark 1: balanced != interpretable.
e Cor 1: Dyck can be solved by uniform attention — not reflecting task structure.

Remark 2: extension to an approximate condition.
e Thm 2: approximate balance from finite samples.
o [Intuition: the deviation from perfect balance needs to be bounded.



Empirical evidence

Balance condition is a very weak constraint on the attention patterns.

e Setup: freezing minimal first layers; train the rest till convergence.
e Results: high-acc models with diverse and non-stack-Llike attention

patterns.

..................................
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Empirical evidence

Balance condition can substantially improve out-of-distribution (length) generalization.

e A contrastive objective that
penalizes balance violation.

e [ntuition: optimal models should be
balanced.

more balanced— better generalization?
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Single Component Indistinguishability

Nonstructural pruning: zero out some
entries in weight matrices.

Thm 3. Consider any given Transformer T, and a polynomially larger
Transformer T, with random weights.

Then, T can be approximated by a non-structural pruning of T, w.h.p.
Proof sketch: similar to repeated applications of the lottery ticket hypothesis.

e Each layer is approximated by a pruning of 4 random layers.
Remark: Uninterpretability of single weight matrix

e Cor 2: There exist functionally different Transformers T;, T, that coincide
with the non-structural pruning of any single component of 7;.



Takeaway

Transformers are not interpretable via myopic methods.

e Dyck as testbed: fully controllable; theory-friendly.

e Uninterpretable attention patterns: balanced condition.
o Little restriction on attention patterns (e.g. uniform attention)
o Contrastive objective: reduced balance violation — better generalization.

e Uninterpretable weight matrix: lottery ticket hypothesis.



