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as 080 -- ALIM achieved SOTA under noisy PLL conditions.
--Partial Label Learning: Each example has a candidate labels set S, and 020 . az0 Table 1: Performance of different methods. ¢ denotes the models without mixup training, and ©
the he ground-truth label must be in the candidate label set. E [(:I‘) F&E S S denotes the models with mixup training. By default, we combine ALIM with PiCO for noisy PLL.
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Methodology e 8 SR8 --ALIM always brings performance improvement under noisy conditions.
A I . Table 2: Compatibility of ALIM on different PLL methods.
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Ther, helmal.obgerctivetanction.is calcaliedas follows: --ALIM'‘s adaptively adjusted A serves as a suitable boundary for clean and noisy subsets
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S(x): Vectorized candidate label set of sample x. o Z st (Z e ) ;w = O B Bl B
P(x): Softmax probabilities of sample x. s | |
W(x): Pseudo label of sample x.

A: control the reliability of the candidate set
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where M and K are penalty factors. By using Lagrange multipliers, we can observe that the penalty
factor K is different for two normalization functions: K = () for Onehot(-) and K > 0 for Scale(-).
The penalty factor M has a strong correlation with the weighting coefficient A i.e., A = ¢~ M Larger
M (or smaller A\) means that we have tighter constraints on (Z::1 w;S; — 1), and therefore we
should trust the given candidate set more.

Figure 2: Distribution of the value in Eq. [ for clean and noise subsets with increasing training
iterations. We conduct experiments on CIFAR-10 (¢ = 0.3, 77 = 0.3) with ¢ = 80.

S(z) = S(z) + (1 - S(x)),

--ALIM's adaptively adjusted A reduce manual efforts in hyper-parameter tunining

w(x) = Normalize (S(J)P(.E)) :
~Interpretation from EM Perspective

Normalize: Assumption 1 In noisy PLL, the ground-truth label may not be in the candidate set S(x). We assume szos o i D Y LR —
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Onehot: set the maximum value to 1 and others to 0. non-candidate label {i|S;(x) = 0} has an equal probability 3(x) of generating S(zx). g o o o
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~Scale: introduces a scaling factor K > 0 and normalizes the probabilities as follows: We prove that the E-step aims to predict the ground-truth label for each sample and the M-step aims to

minimize the classification loss. Meanwhile, ALIM is a simplified version of the results derived from
EM. Specifically, EM uses an instance-dependent A(z) = 3(x)/a(x), while ALIM uses a global A.

(a) CIFAR-10 (w/o mixup) (b) CIFAR-10 (w/ mixup) (C) CIFAR-100 (w/o mixup) (d) CIFAR-100 (w/ mixup)

Figure 3: Classification performance of manually adjusted A and adaptively adjusted A. We conduct
experiments on CIFAR-10 (¢ = 0.3, = 0.3) and CIFAR-100 (g = 0.05,7 = 0.3). We mark the
results of the adaptively adjusted strategy with red lines.
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~\ = 0 means that we fully trust the given candidate set S(x); A = 1 means that
we don’t believe the candidate set but trust our own judgment P (x)

~When A = 0 and K =1, we can find that the classic method PRODEN]2] in the
PLL is a special case of ALIM.

The estimated noise level is represented as 7). we prove that the value of Eq. [fj can be viewed as a
metric, and the n-quantile of this value can be treated as the adaptively adjusted A.

max; S,‘ (J')I), (.7')
max;(1 — Si(z))Pi(z) J .cp
We further present results without noise rate estimation and manually adjust A as a hyper-parameter.
Through experimental analysis, this approach can also achieve competitive performance. Therefore,

the adaptively adjusted strategy is optional. Its main advantage is to reduce manual efforts in
hyper-parameter tuning and realize a more automatic approach for noisy PLL.
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Code:

https://github. com/zeroQiaoba/ALIM



