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Simulation-based inference

e Datay = {y;}"; C R9 denoted by empirical distribution Q"
e Simulator-based model Pg = {Py: § € ©}
@ Py is intractable, but sampling x ~ Py is straightforward

@ Aim: Estimate 6 given data y
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Simulation-based inference

Datay = {yi}"; C RY denoted by empirical distribution Q"

Simulator-based model Pg = {Py : 6 € ©}

Py is intractable, but sampling x ~ Py is straightforward
@ Aim: Estimate 6 given data y

Solution: methods based on distances like approximate Bayesian computation (ABC);
methods based on deep neural networks like neural posterior estimation (NPE)
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Simulation-based inference

Datay = {y;}"; C RY denoted by empirical distribution Q"

Simulator-based model Pg = {Py : 6 € ©}

Py is intractable, but sampling x ~ Py is straightforward

@ Aim: Estimate 0 given data y

Assumption: Model is “correct”, i.e., Q" € Pgo

Problem: Model misspecification, i.e. Q" ¢ Pg = #0 € © s.t. Py = Q"

» Stochasticity in data collection process (outliers, missing data, broken independence
assumption, etc.)

> “All models are wrong..."

@ Even more problem: Inference is based on simulation from misspecified model!
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Inference is based on summary statistics
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Insight 1: Under misspecification, observed statistic goes outside the set of simulated statistics

= SBI methods have to generalize outside their training data
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Insights

Insight 1: Under misspecification, observed statistic goes outside the set of simulated statistics

= SBI methods have to generalize outside their training data

Insight 2: Even if model is misspecified (Q" ¢ Pg), it may be well-specified w.r.t the statistics

@ Example: Gaussian model, skewed data
@ Misspecified if statistics are sample mean and sample skewness
o Well-specified if statistics are sample mean and sample variance

o If we pick statistics appropriately, we can be robust!
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Learning robust statistics for SBI

proposed loss = usual loss + AD(simulated statistics, observed statistic)
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Learning robust statistics for SBI

proposed loss = usual loss + AD(simulated statistics, observed statistic)
@ For ABC or other SBI methods, usual loss is autoencoder’s reconstruction loss
@ For NPE, statistics and posterior can be learned jointly
@ We want D to be outlier-robust. Hence, maximum mean discrepancy.

@ Regularizer \: encodes trade-off between accuracy and robustness
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Results

o Ricker model: 2 parameters
e Inference method: Neural posterior estimation (NPE)
e c-contamination model: Q = (1 —¢€)Py, . + €Py,
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Results
Application to real data

Radio propagation example
@ 4 parameters
o Data dimension: 801
@ Model misspecified due to broken iid assumption
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Conclusion

@ We propose a simple solution for tackling misspecification of simulator-based models.
@ Our method can be applied to any SBI method that utilizes summary statistics.
@ Our method only has one hyperparameter balancing efficiency and robustness.

@ We show robustness under misspecified scenarios with both synthetic and real-world data.
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