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Background

 MARL has wide applications in many real-life scenarios.

W,

« However, most MARL algorithms prioritize olcy optimiz'étion solely for reward

maximization, while disregarding potential negative or harmful consequences resulting

from the agents' behaviors.

* In this work, we focus on designing algorithms that learn policies which adhere to safety

constraints.



Challenges

* Developing safe policies for multi-agent systems poses daunting challenges.
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* Two problems:

» The environment may suffer from non-stationarity due to simultaneously learning agents.

» Ensuring safety in MARL is highly intricate.



Safe Multi-Agent RL Formulation

* We model the problem with Constrained Markov Decision Process, which can be
described by a tuple < WV, S, A, p, p°, v, R, C, ¢ >.
» N means the number of agents.
» S and A denotes the state and action space of agents.
»p:S X A XS — R represents the probabilistic transition function.
> pY is the initial state distribution and y is the discounted factor.

» R means the team reward while C is the set of cost functions and ¢ denotes the corresponding

cost-constraining values.

* The objective of safe MARL problem is to maximize team reward while satisfying

safety constraints.



Related Work
« Arecent remarkable work called MACPO addresses safe MARL problem

by developing the multi-agent trust region learning based on CPO, which

also motivates our work.

 Although providing theoretical guarantees of both monotonic improvement
In reward and compliance with cost constraints, this method involves
solving an optimization problem using very complex computation, which

also introduces nonnegligible approximation errors.



Method

» We propose a new algorithm to help multi-agent systems learn policies while ensuring safety

constraints. It can deduced that for agent i;, and the index of its cost function j, given the joint
policy 1y, and updated policies of previous agent sets nélki’;l, the new policy is obtained by
solving the following problem:
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» \We solve the problem using a two-step approach:
> We first find the optimal policy update which may be in nonparameterized policy space.

» Then we need to project the optimal policy back into parameterized policy space, which

allows for evaluation and sampling.



Method
 Finding the optimal policy update:

> For agent i}, we define bjih = cjih — ]J‘:h (g, ), the optimal policy can be represented using
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>Z/1,-,v,- (s) is the partition function that ensures the policy to be a valid probability distribution.

» A;j and v; are solutions to an optimization problem:
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Method
« Approximating the Optimal Update Policy :

> Minimizing the loss function L(6) = Es-,,  [D, (ng’l‘ |nih*)(s)] to obtain the
k

parameterized policy which is closest to the optimal update policy.

» We propose that first-order methods can be adopted in this process.
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Method

 Overall Implementation

> Solve Aj and v;

> A; is similar to temperature term and we set it as a fixed value.
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« Algorithm Outline
» For every iteration, start with joint policy g, and generate trajectories using it.
» Estimate the C-returns and advantage functions.
» Making use of the collected data to obtain v;.

» Update value and policy networks using the derived equations.



Experiments

« Experiment benchmarks
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Experiments

 Performance on Safe Multi-agent MuJoCo
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Experiments

* Efficiency Analysis

» Our algorithm brings apparent improvement in the computational efficiency and memory

usage.
Scenarios Ant Task HallChectah Task Scenarios Ant Task HalfCheeath Taks
Conlig —
_ onfig | o il oxs | owo | osa | oo | a2 | oex _ Conlig | seaa | 204 | ax2 | sx1 | 263 | 32 | 6n1
FFS Memory {MiB)
MACPO 231 218 130 73 298 192 106 MACPO IR.85 | 2360 | 31.24 | 6625 | 1654 | 3020 | 52.08
MAFOCOPS 322 270 16() 115 340 229 162 MAFOCOPS 1897 | 2182 | 2423 | 5699 ) 1934 | 2726 | 3015
Improvement(%) | 39.39 | 23.85 | 23.08 | 57.53 | 14.09 | 19.27 | 52.83 Saved Memory L1200 LT | 700 | 926 | 28D | 293 | 1293
Scenarios MunyAgenl Anl Task Scenarios Many Agent Ant Task
‘onlie Comfi
Config | 5+ | 25 | 6x1 ot | 4x2 | i _ OB 2 | a2z | et | - | 2 | ax2 | 8
FP5 Memory (MiB)
MACPO 244 167 0% 317 135 71 MACPO 2532 | 3264 | 3527 - 2731 | 3890 | 65.02
MAFOCOPS | 271 | 299 | 129 253 | 193 | 115 MAFOCOPS 2445 | 3088 | 4438 | - | 2462 | 3473 | 6071
Improvement(%) | 11.07 | 49.10 | 52.04 905 | 4296 | 57.53 saved Memory 057 | L7 (08| — | 269 | 417 | 431
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