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decisions made by analysts 
to compensate for the noise 
(think cross-validation and 

regularization)
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Noise 
in data generation

Data about humans are noisy!

Clerical errors and data 
collection issues

Biases in the justice, financial,
medical systems

Random processes
in the world



Noise in high-stakes decision domains 

leads to technical justification 

for demanding 

simpler (interpretable) models
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Uniform random label noise (Theorem 2 )
Labels flip with probability p(x) (Theorem 12)
Margin noise (Theorem 15)
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Generalization bounds for continuous and 
discrete hypothesis spaces



↗ variance of the loss

↘  generalization

↘ complexity of the space

Be
st

 D
ep

th

noise

v COMPAS recidivism risk score 
prediction dataset

v Space of decision trees



↗ variance of the loss

↘  generalization

↘ complexity of the space

↗ the Rashomon ratio

noise

v COMPAS recidivism risk score 
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Rashomon ratio is larger for decision trees of 
smaller depth (Proposition 6)
Rashomon ratio increases with noise for ridge 
regression (Theorem 7)
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Our results explain why on noisier datasets
simpler models often tend to perform
as well as black boxes
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