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decisions made by analysts
to compensate for the noise
(think cross-validation and
regularization)



Data about humans are noisy!

Noise
in data generation

N

Random processes

\ in the world

Biases in the justice, financial,
medical systems

Clerical errors and data
collection issues



Noise in high-stakes decision domains
leads to technical justification
for demanding

simpler (interpretable) models
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Rashomon ratio is larger for decision trees of
smaller depth (Proposition 6)

Rashomon ratio increases with noise for ridge
regression (Theorem 7)

noise



Path

/" the Rashomon ratio

.?.
) /3
/5

&

\\ complexity of the space

&

®

/ variance of the loss
o2\
_ :"l

&




/" the Rashomon ratio

Our results explain why on noisier datasets
simpler models often tend to perform
as well as black boxes

noise
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