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Can We Directly Teach Robots to Coordinate by Showing Them
How to?

Learning Multi-Agent Coordination and
Collaboration Policies from Expert Human
Demonstration




Why Learning from Human Demonstrations?
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Domain Complexity
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Human’s Preferred Way

Reward Expressiveness

Abel, David, et al. "On the Expressivity of Markov Reward." Advances in Neural Information Processing Systems 34 (2021).
Matignon et al. "Reward function and initial values: Better choices for accelerated goal-directed reinforcement learning." International Conference on Atrtificial Neural Networks. Springer, Berlin, Heidelberg, 2006.



Mixed-Initiative Multi-Agent Apprenticeship Learning (MixTURE)
for Human Training of Multi-Robot Teams

Single Human — Robot Teams

w/o communication ’ » Learn differentiable
demonstration communication during Training
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BCE Loss
Discriminator

Forward Model

1- Train the discriminator
using human data

Expert Sample
Dg = (st a¢)

2- Add differentiable
communication channels

3- Use soft attention
mechanism to weight
received messages

=  One human expert can do the job

Dataset

Train...!

=  Communication will be learned, and
heterogeneous interaction is possible

=  Much easier to provide demonstration



MixTURE: Mixed-Initiative I\/Iulti-Agent Apprenticeship Learning
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Mutual Information Maximization for Differentiable Communication
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1- Train the discriminator
using human data

* Improve message distribution given joint observation:

Backprop through...
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messages

Make the communication more

Train...!

semantically meaningful based on obs.




Human Subject Study Flow

Recap

» (RQ1) Can the MixTURE architecture learn useful coordination strategies from synthetic data (models of
human experts)?

o Evaluate the quality of learned policies against SOTA baselines and ablations to confirm performance and sample
efficiency.

» (RQ2) Is the MixTURE architecture applicable to learning from real human data?

o Evaluate the performance against baseline with expert demonstrated communication.

» (RQ3) How challenging is it for human experts to provide multi-agent demonstration and does MixTURE
alleviate the challenge as compared to classic MA-LfD architectures?

o Compare Workload Scores (WS) for cases when a subject uses the MixTURE vs. a classical MA-LfD architecture.

o Compare System Usability Scores (SUS) for cases when a subject uses the MixTURE vs. a classical MA-LfD architecture.




Human Subject Study Flow

Environment

FireCommander

55 subjects, within-subject study,

Conditions

1- noComm Condition: only demonstrate
environment actions for each agent
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2- withComm Condition: demonstrate both an
environment action and a comm. action
(message) to be broadcasted for each agent
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Metrics

1- Game score: a function of
existing, found, and killed firespots

2- Learned policy performance:
deploy learned policies in env.

3- Scalability: number of tasks
completed by human

4- Time required for demo

5- Workload

6- Usability Score

students (34. 5% female), avg. age of 25 + 2.6



Human-Subject Dataset

= Baseline Comparison: Evaluate the learned policy via MixTURE and MA-LfD baselines on real human data.

Medium scenario: 10x10 domain, 4 Hard scenario
agents (2P, 2A), 5 initial fires

Easy scenario: 8X8 domain, 5 agents

(3P, 2A), 1 initial fire

Step Duratjon: 2.693 Sec
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Human-Subject Dataset

= Baseline Comparison: Evaluate the learned policy via MixTURE and MA-LfD baselines on real human data.

Easy scenario: 8X8 domain, 5 agents Medium scenario: 10x10 domain, 4 Hard scenario

agents (2P, 2A), 5 initial fires

(3P, 2A), 1 initial fire
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Objective Results
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Summary

(1) Performance: Demonstrating communication for a multi-agent team significantly (» < .001) reduces the human performance in FC task.

(2) Avg. Time per Demonstration Step: Demonstrating communication for a multi-agent team significantly (p < .001) increases the
demonstration time in FC task.

(3) Total Tasks Completed: Demonstrating communication for a multi-agent team significantly (» < .001) reduces the human’s ability to
accomplish tasks in FC.




Subjective Results

Summary
Lower is Better! Higher is Better!
(1) Workload Score — NASA TLX [1]: Demonstrating communication for a
multi-agent team significantly (p < .001) increases the human workload in FC * % % & %k ok
task (increase by 44.3%). — IR
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— withComm

(2) System Useability Scale [2]: Demonstrating communication for a multi-

agent team significantly (p < .001) reduces the system usability score for FC 80

task (decrease by 46.7%).
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Using MixTURE bypasses the communication demonstration step and 40
therefore leads to lower workload and higher system
usability score by a human expert. . | i
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Workload [1] sus [2]

Measurements

[1] Hart, Sandra G., and Lowell E. Staveland. "Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research." Advances in psychology. Vol. 52. North-Holland, 1988. 139-183.

[2] Brooke, John. "SUS-A quick and dirty usability scale." Usability evaluation in industry 189.194 (1996): 4-7.
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Appendix



How to Incorporate Human Data for Learning Heterogeneous
Multi-Agent Coordination?

Human Teams — Robot Teams Single Human — Robot Teams Single Human — Robot Teams

w/ communication . w/o communication ‘
demonstration demonstration
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= One human expert can do the job m = One human expert can do the job = One human expert can do the job
* Need comm. & coordination among =  Comm. needs to be a part of the m = Comm. is still a necessity & w/o it, m
human demonstrators m action-space agents cannot coordinate

= Hard to translate to robot domain m = Message-space must be known m =  Much easier to provide demonstration 15



Empirical Evaluation: Research Questions

* Three main research questions:

» (RQ1) Can the MixTURE architecture learn useful coordination strategies from synthetic data (models of human experts)?
o Evaluate the quality of learned policies against SOTA baselines and ablations to confirm performance and sample efficiency.

» (RQ2) Is the MixTURE architecture applicable to learning from real human data?

o Evaluate the performance against baseline with expert demonstrated communication.

» (RQ3) How challenging is it for human experts to provide multi-agent demonstration and does MixTURE alleviate the
challenge as compared to classic MA-LfD architectures?

o Compare Workload Scores (WS) for cases when a subject uses the MixTURE vs. a classical MA-LfD architecture.

o Compare System Usability Scores (SUS) for cases when a subject uses the MixTURE vs. a classical MA-LfD architecture.




Empirical Evaluation: Evaluation Process

= Datasets: To investigate RQ1, RQ2, and RQ3:

Heuristic Design . Demonstration

Env. Actions Comm. Actions
Heuristic Heuristic

m Comm. Actions

Deploy in Environment

Human Expert
Demonstration Dataset

Synthetic Expert
Heuristic Dataset

17



Synthetic Expert Heuristic Dataset

= Baseline Comparison:

Easy scenario: 5X5 domain, 3 agents (2P,
1A), 1 prey or initial fire

Moderate scenario: 10x10 domain, 6
agents (3P, 3A), 1 prey or initial fire

Hard scenario: 20x20 domain, 10 agents
(6P, 4A), 3 prey or initial fires

Summary

1- MixTURE outperforms all baselines, in
all domains, and all levels of difficulty.

2- MixTURE improves sample complexity,

the quality of learned policy at
convergence, and can scale to various

domain and robot team sizes.
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