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MTP2 Gaussian Graphical Model
Gaussian Graphical Models (GGMs) are a powerful tool for representing complex
multivariate data.

Each node corresponds to one variable
The lack of an edge between two nodes signifies that the corresponding variables
are conditionally independent given the other variables.

Multivariate Total Positivity of Order 2 (MTP2) is a property that characterizes a
specific type of positive dependency among variables.
Learning MTP2 GGMs from data:

minimize
Θ

− log det (Θ) + ⟨Θ,S⟩ + ∑
i ̸=j Λij |Θij| ,

subject to Θ ≻ 0 and Θij ≤ 0, ∀i ̸= j.
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Bridge-Block Decomposition on Thresholded Graph
Thresholded matrix Tij =

Sij − Λij if i ̸= j and Sij > Λij,

0 otherwise.

Thresholded graph: (i, j) ∈ E if Tij ̸= 0.
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Bridge: The edges whose deletion increases the number of graph components.
Bridge-Block Decomposition: Commponents after all bridges are removed.
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Main Results
Theorem
Given the bridge-block decomposition of the thresholded graph as Pbbd, and the optimal
solution of each sub-problem as Θ̂k, the optimal solution Θ⋆ can be obtained as

Θ⋆
i,j =



[Θ̂k]π(i),π(i) + ζi if i = j ∈ Vk,

[Θ̂k]π(i),π(j) if i ̸= j and i, j ∈ Vk,

−Tij

/
(SiiSjj − T 2

ij) if (i, j) ∈ B,

0 otherwise.

in which ζi = 1
Sii

∑
(i,m)∈B

T 2
im

SiiSmm−T 2
im

and ζi = 0 if ∀m : (i, m) /∈ B.

Xiwen Wang (xwangew@connect.ust.hk) The Hong Kong University of Science and Technology 4 / 8



Proposed Solving Frameworks
1. Preprocessing:

Compute the thresholded graph.
Compute the bridges in thresholded graph.
Compute the bridge block decomposition as clusters.

2 .Solving Sub-problems individually:
For each cluster, solve the reduced-size sub-problem.

3. Obtaining Optimal Solution:
Using proposed theorem to obtain the optimal solution:

Θ⋆
i,j =



[Θ̂k]π(i),π(i) + ζi if i = j ∈ Vk,

[Θ̂k]π(i),π(j) if i ̸= j and i, j ∈ Vk,

−Tij

/
(SiiSjj − T 2

ij) if (i, j) ∈ B,

0 otherwise.
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Data Experiments

Figure: Local structure.
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Figure: Convergence results.
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Reproducibility

The code for the experiments can be found at:
https://github.com/Xiwen1997/mtp2-bbd

Convex Research Group at HKUST:
https://www.danielppalomar.com
https://github.com/dppalomar
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THANK YOU!
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