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¨ User modeling aims to capture the user’s characteristics or interests for a specific user-oriented 
task, such as user profiling and personalized recommendation.

¨ Existing supervised methods heavily rely on task-specific labeled data and suffer from the 
data sparsity problem.

¨ A mainstream technique to tackle this challenge is the pre-training paradigm.
o The user model is first pre-trained on a mass of unlabeled user behavior data.
o Then the model is transferred to benefit various downstream tasks via fine-tuning.
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¨ Inspired by the recent progress in CV and NLP, several recent works explored pre-training the 
user model with a contrastive learning task.

¨ They assume different views of the same behavior sequence constructed via data augmentation 
are semantically consistent, i.e., reflecting similar characteristics or interests of the same user, 
and thus maximizing their agreement in the feature space.
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¨ Due to the diverse interests and heavy noise in user behaviors, existing data augmentation 
methods tend to lose certain characteristics of the user or introduce noisy behaviors.

¨ To address this problem, we propose to replace the contrastive learning task with a new pretext 
task: Augmentation-Adaptive Self-Supervised Ranking (AdaptSSR).
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Figure 1: An illustration of the impact of different data augmentation methods on the user behavior sequence.
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¨ Main Idea: Self-Supervised Ranking
o Train the user model ℳ to capture the similarity order between the implicitly augmented view, the 

explicitly augmented view, and views from other users.
o Given a user behavior sequence 𝑆 = 𝑥!, 𝑥", … , 𝑥#

n Input 𝑆 into ℳ twice with different independently sampled dropout masks → 𝒖, 𝒖$ (implicit data 
augmentation)

n Input the augmented behavior sequence )𝑆 into ℳ→ *𝒖 (explicit data augmentation)
n Input the behavior sequence of another user into ℳ→ 𝒖%

o Pre-training objective: sim 𝒖, 𝒖$ ≥ sim 𝒖, *𝒖 ≥ sim 𝒖, 𝒖%
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¨ Multiple Pairwise Ranking (MPR) with In-batch Hard Negative Sampling
o Given a batch of user behavior sequences {𝑆&}&'!( , apply two randomly selected explicit augmentation 

methods to each sequence 𝑆& → )𝑆& and 1𝑆&
o Input )𝑆& and 1𝑆& into ℳ twice → *𝒖&, *𝒖&$ and 2𝒖&, 2𝒖&$
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Figure 2: The framework of AdaptSSR. A sequence with five user behaviors is used for illustration.
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¨ Multiple Pairwise Ranking (MPR) with In-batch Hard Negative Sampling
o MPR loss: extend the BPR loss to learn two pairwise ranking orders simultaneously.
o For the augmented sequence )𝑆&, the user representation *𝒖&, *𝒖&$ and each 𝒗 ∈ 2𝒖&, 2𝒖&$ ,
𝒘 ∈ 𝐔&% = *𝒖), *𝒖)$, 2𝒖), 2𝒖)$ )'!,)+&

( form a quadruple for model training.
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+
i )� max

v2{ũi,ũ
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o In-batch hard negative sampling: for each pairwise ranking order, select the pair with the smallest 
similarity difference to facilitate model training.

o The loss function 1ℒ& for another augmented sequence 1𝑆& is symmetrically defined and the overall loss 
is computed as ℒ = ∑&'!( ⁄( )ℒ& + 1ℒ&) 2𝐵. 
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¨ Augmentation-Adaptive Fusion
o The effects of data augmentation vary significantly across different behavior sequences.
o The constant hyper-parameter 𝜆 applies a fixed and unified constraint to all samples.

S̃i. Then we replace the hyper-parameter � in Equation (6) with a dynamic coefficient �i for each
training sample Si, which is calculated along the training procedure and formulated as follows:

�i = 1� 1
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To get an accurate similarity estimation at the beginning of the training, we train the user model with
the MLM task [54] until convergence before applying our self-supervised ranking task. If Ŝi and
S̃i are semantically similar, �i will be small and set the loss function L̂i focusing on maximizing
the latter term sim(ûi,v)� sim(ûi,w), which forces the user model to discriminate these similar
explicitly augmented views from views of others. Otherwise, �i will be large and train the user model
to pull the implicitly augmented view and these dissimilar explicitly augmented views apart. As a
result, the user model is trained to adaptively adjust sim(ûi,v) when combining the two learned
pairwise ranking orders for each sample, which can better deal with the distinct impacts of data
augmentation on different behavior sequences.

3.4 Discussion

In this subsection, we discuss the connection between our proposed self-supervised ranking task and
existing contrastive learning-based methods.

If we set �i ⌘ 0 for all training samples and input each behavior sequence into the user model once
(i.e., do not apply the implicit data augmentation), our loss function degenerates as follows:
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exp (sim(ûi, ũj)) + maxw2V�
i
exp (sim(ûi,w))
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where V�
i = {ûj , ũj}Bj=1,j 6=i. Most existing contrastive learning-based pre-training methods [2, 33,

39] adopt the InfoNCE loss [31] to train the user model, which can be formulated as follows:

LInfoNCE = � log
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P
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. (9)

Both loss functions aim to maximize the agreement between the augmented views. The sole distinction
is that L̂0

i selects the hardest in-batch negative sample, which is most similar to the anchor ûi, whereas
LInfoNCE uses the entire negative sample set V�

i . Thus, with the same data augmentation method, the
degenerated version of AdaptSSR is equivalent to combining contrastive learning-based methods with
hard negative sampling, which has been proven to be effective by several recent studies [18, 36, 43].

When �i > 0, the former term sim(ûi, û
+
i )�maxv2{ũi,ũ

+
i } sim(ûi,v) in our loss function forces

the user model to capture the similarity order sim(ûi, û
+
i ) > sim(ûi,v) as well. In addition, our

augmentation-adaptive fusion mechanism automatically adjusts the similarity order constraint applied
to each sample. Therefore, our method alleviates the requirement of semantic consistency between
the augmented views and can adapt to various data augmentation methods.

4 Experiments

4.1 Experimental Setup

Datasets We conduct experiments on two real-world datasets encompassing six downstream tasks.
The first dataset, the Tencent Transfer Learning (TTL) dataset, was released by Yuan et al. [54] and
contains users’ recent 100 interactions on the QQ Browser platform. Additionally, it provides the
downstream labeled data of two user profiling tasks: age prediction (T1) and life status prediction (T2),
and two cold-recommendation tasks: click recommendation (T3) and thumb-up recommendation
(T4). The second dataset, the App dataset, consists of users’ app installation behaviors collected by a
worldwide smartphone manufacturer, OPPO, from 2022-12 to 2023-03. Each user has been securely
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v2{ũi,ũ
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sim(ûi, û
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+ (1� �) (sim(ûi,v)� sim(ûi,w))

⇤

L̂i = � log �

"
�

 
sim(ûi, û
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+
i }
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o Replace 𝜆 with a dynamic coefficient 𝜆&, which is estimated based on the average similarity between 
the user representations generated from )𝑆& and 1𝑆&.

o If )𝑆& and 1𝑆& are semantically similar, 𝜆& will be small and force the user model to discriminate these 
similar explicitly augmented views from views of other users.

o Otherwise, 𝜆& will be large and train the user model to pull the implicitly augmented view and these 
dissimilar explicitly augmented views apart.
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¨ Datasets and Downstream tasks
o Tencent Transfer Learning (TTL) dataset

n 𝒯!: age prediction
n 𝒯": life status prediction
n 𝒯,: click recommendation
n 𝒯-: thumb-up recommendation

o App dataset
n 𝒯.: gender prediction
n 𝒯/: CVR prediction

¨ Metrics
o Classification accuracy for multi-class classification tasks (𝒯!, 𝒯").
o NDCG@10 for cold-recommendation tasks (𝒯,, 𝒯-).
o AUC for binary classification tasks (𝒯., 𝒯/).

Table 1: Detailed statistics of each dataset and downstream task.
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¨ Overall Performance on Downstream TasksTable 2: Performance (%) of various pre-training methods on downstream tasks. Impr (%) indicates
the relative improvement compared with the end-to-end training. The best results are bolded.

Pre-train
Method

T1 T2 T3 T4 T5 T6
Acc Impr Acc Impr NDCG@10 Impr NDCG@10 Impr AUC Impr AUC Impr

None 62.87±0.05 - 52.24±0.16 - 1.99±0.03 - 2.87±0.07 - 78.63±0.06 - 75.14±0.14 -
PeterRec 63.62±0.11 1.19 53.14±0.07 1.72 2.37±0.02 19.10 3.06±0.08 6.62 79.61±0.13 1.25 76.04±0.10 1.20
PTUM 63.21±0.14 0.54 53.05±0.04 1.55 2.29±0.03 15.08 2.96±0.03 3.14 79.48±0.11 1.08 75.82±0.13 0.90
CLUE 63.38±0.10 0.81 53.23±0.05 1.90 2.38±0.02 19.60 3.05±0.21 6.27 79.90±0.06 1.62 76.03±0.16 1.18
CCL 63.76±0.11 1.42 53.37±0.09 2.16 2.43±0.02 22.11 3.32±0.13 15.68 80.22±0.07 2.02 77.35±0.10 2.94

IDICL 63.88±0.04 1.61 53.45±0.05 2.32 2.46±0.02 23.62 3.42±0.04 19.16 80.34±0.05 2.17 77.92±0.08 3.70
CL4SRec 63.71±0.14 1.34 53.43±0.05 2.28 2.41±0.03 21.11 3.29±0.06 14.63 80.14±0.08 1.92 77.02±0.05 2.50
CoSeRec 63.89±0.03 1.62 53.53±0.09 2.47 2.44±0.02 22.61 3.33±0.05 16.03 80.48±0.06 2.35 77.71±0.09 3.42
DuoRec 63.50±0.09 1.00 53.26±0.06 1.95 2.39±0.01 20.10 3.11±0.16 8.36 80.03±0.09 1.78 76.85±0.09 2.28

AdaptSSR 65.53±0.04 4.23 54.41±0.02 4.15 2.61±0.03 31.16 3.73±0.03 29.97 82.30±0.03 4.67 79.92±0.05 6.36

compared to most discriminative pre-training methods. This is because these methods mainly focus
on mining the correlation between behaviors while lacking careful design for user representation
learning, which limits their performance on downstream tasks. Second, discriminative pre-training
methods with explicit data augmentation (e.g., CCL, CL4SRec, CoSeRec) generally outperform
the method relying solely on implicit data augmentation (CLUE). We argue that this is because the
implicit data augmentation caused by the dropout mask alone is too weak. The user model can easily
distinguish the positive sample from others, thus providing limited knowledge for downstream tasks.
Third, our AdaptSSR consistently surpasses previous SOTA contrastive learning-based pre-training
methods by 2.6%, 1.7%, 6.1%, 9.1%, 2.3%, and 2.6% on each downstream task respectively, and
our further t-test results show the improvements are significant at p < 0.01. This is because we
train the user model to capture the similarity order �, rather than directly maximizing the similarity
between the explicitly augmented views. Such a ranking task alleviates the requirement of semantic
consistency while maintaining the discriminability of the pre-trained user model.

4.3 Performance with Different Data Augmentation Methods

As our method alleviates the requirement of semantic consistency between the augmented views and
can adapt to a variety of data augmentation methods, we further combine it with several existing

Figure 3: Effectiveness of AdaptSSR when
combined with existing pre-training methods.

pre-training methods: CL4SRec, CoSeRec, and CCL,
by replacing the contrastive learning (CL) task with
our AdaptSSR while maintaining their data augmen-
tation methods. We vary the augmentation propor-
tion ⇢ from 0.1 to 0.9 and evaluate the performance
of these methods on the downstream age prediction
task (T1). The results on other downstream tasks
show similar trends and are included in Appendix D.
From the results shown in Fig. 3, we find that these
contrastive learning-based methods are quite sensi-
tive to the data augmentation proportion. When ⇢
is close to 0, the user model can easily discriminate
these weakly augmented positive samples from oth-
ers during pre-training and thus brings limited per-
formance gain to the downstream task. However, the
stronger the augmentation is, the more likely it is to
generate dissimilar augmented views and may even
cause a negative transfer to the downstream task. In
contrast, our AdaptSSR significantly improves the
performance of all these pre-training methods with
different augmentation proportions to a similar level. This is because our self-supervised ranking
task takes the potential semantic inconsistency between the augmented views into account and avoids
directly maximizing their similarity. In addition, our augmentation-adaptive fusion mechanism can
properly combine the learned pairwise ranking orders based on the estimated similarity between the
explicitly augmented views constructed by various augmentation methods with different strengths,
which leads to similar model performance.

8

Table 2: Performance (%) of various pre-training methods on downstream tasks. Impr (%) indicates the relative improvement compared 
with the end-to-end training. The best results are bolded.
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¨ Performance with Different Data 
Augmentation Methods

Figure 3: Effectiveness of AdaptSSR when combined with 
existing pre-training methods.

Figure 4: Effectiveness of each component in our AdaptSSR.

¨ Ablation Study
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¨ User Representation Similarity Distribution Analysis

Figure 5: Distributions of the cosine similarity between user representations generated from the original behavior sequence, different augmented 
behavior sequences, and the behavior sequences of other users with various pre-training methods. The area under each curve equals to 1.
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¨ We identified the semantic inconsistency problem faced by existing contrastive learning-
based user model pre-training methods.

¨ Augmentation-Adaptive Self-Supervised Ranking (AdaptSSR)
o Train the user model to capture the similarity between the implicitly augmented view, the explicitly 

augmented view, and views from other users with a multiple pairwise ranking loss.
o Facilitate model training with in-batch hard negative sampling.
o Adjust the similarity order constraint applied to each sample based on the estimated similarity 

between the augmented views with an augmentation-adaptive fusion mechanism.
¨ Extensive experiments validated the effectiveness of our method.
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