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Whatistheoptimaltimeto . s is an optimal stopping problem
exercisea stock option?

* Typically solved in the restrictive
Markoviansetting invoking the efficient
market hypothesis

o State of the art methods are based on
deep neural networks (DNNSs)

This work explores model-free optimal stopping algorithms effective for
non-Markovian settings, leveraging recurrent neural networks (RNNSs).




Curse of dimensionality:
Explosion of augmented
state and parameter space

Curse of non-Markovianity:
recursive value estimation
algorithms are not suitable

Suitable parameterization of
state space
(e.g., using RNNs)

Explore direct policy
learning methods
(e.g., policy gradients)




Reward canonly be obtained
at the stoppingtime andis a
function of process history

stopping policy: can either

Policy must stop onor
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at time step J:

§;: processhistory

A;: {01t policy actions

R;: reward achievable

Z]-: 1,0}, 1if reward is obtained when T = j
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stochasticstoppingpolicy ¢! (S;) canbe
parameterizedby anRNN preventing state
and parameter space explosion.
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P(Z = 1|Ry,Sy; 0) obtained via inference onRATM

Binary RV Z = 1 if rewardis
obtained over a trajectory

il

trajectory weights

Jwmr(0) = zwi logP(Z = 1|1y, siy; 0)

l RATMinference
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6* optimalpolicy

Bayesnetinferenceleads to
directpolicy optimization,
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Claim(OSPG). Incremental E-M with a single gradient step instead
of full M-step is equivalent to a policy gradient method

Optimal Stopping Policy Gradient (OSPG)

OSPGhighlights
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works with Bayes netinference is used to
offlineprocess eliminate expensive Monte Carlo

trajectories policyrollouts

Firstpolicy gradientalgorithmfor
optimal stopping

Offline algorithm without expensive
Monte Carlopolicyrollouts

AdvantageoverE-Mis that it can be
implemented with SGD.

Optimizes value functions without
recursion




Claim(OSPG and Value functions): OSPG can equivalently be expressed
using empirical stopping and continuation values

Valueformof OSPG

VoJos(0) = Es, ps.) Voo, (s5)
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vj: empirical stopping value \ V )

k;: empirical continuationvalue

calls for increasing stopping probability if:

9 .
empirical ratioof stopping | Vj b; (Sj) odds of stoppingunder

valuetocontinuationvalue | k; = 1 — 9 ( Sj) the currentpolicy
J




Experimentsin financial derivative pricing
— Pricing Bermudan max-call options
— Pricing American geometric-average call options
— Pricing non-Markovian financial derivatives

OSPG performs competitively with state-of-the-art option pricing
methods even in Markovian settings while outperforming in non-
Markovian settings!

More results and details in the paper.
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