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Motivation: info-theoretic limit of lossy compression

Lossy compression algorithms (e.g., JPEG) are typically evaluated on
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Motivation: info-theoretic limit of lossy compression

Question: Given a data source and distortion metric, what's the
best possible rate-distortion (R-D) tradeoff?

rate (“avg file size”)

Answer: the rate-distortion function [Shannon 1959] [bits / file]

inf I(X;Y)
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This work (also see [Gibson 2017, Yang & Mandt 2022, Lei et
al., 2023]): a new, neural network-free algorithm for
estimating R(D) over continuous spaces, based on
ideas/techniques from Optimal Transport.
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The R-D problem, formally

Given: 1. (&, )), a.k.a. the (data, reconstruction) alphabets (Polish spaces here).
2. Source distribution u on X.
3. Distortion metric p: X< Y — [0, )

R(D) = inf H(m|m ® m3)
m€ll(p,): [ pdn<D

We work with an equivalent “Lagrangian” parameterization of R(D), following
[Blahut 1972, Arimoto 1972]

F(\) := inf inf A dm + H ®
W= dnf inf A [ pdnt Hixlue )
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Background: optimal transport (OT)

Given: 1. (X, ))), a.k.a. the (source, destination) spaces.

2. Source distribution ¢ on X, target distribution von ).

1%
3. Cost function p: X x Y — [0, ) A/;
o
| \
inf / p(z,y)dr(z,y) -

m€Il(p,v)

The Kantorovich problem:

Defines a metric (Wasserstein distance) b/w prob. measures if the cost p is a metric.

Entropic regularization [Peyré € ) = inf / dr + eH(mwlu Q v
and Cuturi, 2019, Chapter 4]: zor(t,v) mell(p,v) P (s )



Theoretical insights — part 1

The R-D problem (1) is equivalent to
(2) Projection under an entropic OT cost;

(3) Deconvolution/denoising of the source (e.g., quadratic cost = Gaussian noise)

1) min £} e min £ U
(1) g BA(H, V) (2) &30 por (V)
Also see [Csiszar, 197 Rigollet and Weed, 2018]

and [Lei et al., 2023]
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Theoretical insights — part 1

Thus,

R(D decreasing \ —s
- The convolution between a ( )

Gaussian and any distribution F
(e.g., Gaussian mixture with
shared covariance) has a segment
of R(D) available in closed-form;

- Provides a wide class of sources W Iul v
that can serve as test cases for ",|

algorithms.

7
-F




Wasserstein gradient descent

Suppose X =Y =R?, p continuously differentiable. Goal:
min £(V)7 E() € {EBA(/L7°)7£EOT(/-L7')}

veP(RY)

|ldea: simulate the gradient flow of the £ in the 2-Wasserstein space of probability
measures [Santambrogio 2015]: 5L

y(t) = (id — ’yV—(V(t_l))) =)
O #

ov
_/

i d d
W. gradient: R*— R

The Wasserstein gradient can be tractably computed by

- Sinkhorn’s algorithm, for £ = Leor» OF

- Assingle Sinkhorn iteration, for £ =%, (orders of magnitude faster!)



Wasserstein gradient descent

() = (1d vv(sﬁ( (t_l))) =1
oV "

In practice, we maintain/update particles:
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Theoretical insights (2)

The R-D problem is equivalent to “EOT projection”, therefore:

Finite-sample bounds on estimating £_ .
2019, Rigollet and Stromme, 2022]
ﬂimplies

[Mena and Niles-Weed, 2019, Genevay et al.,

Finite-sample bounds on estimating R(D) [also see Harrison and Kontoyiannis, 2008]:

Proposition 4.3. Let ;1 be o*-subgaussian. Consider L := Lgor. Then the optimal reproduction
distribution v* is also o*-subgaussian. For a constant Cy only depending on d, we have

5 [5d/2]+6 1 1
£| | < ue (1+ S ) (G + )

for all n,m € N, where P,,(R?) is the set of probability measures over R? supported on at most n
points, i is the empirical measure of | with m independent samples and the expectation E[-] is
over these samples. The same inequalities hold for L := XL 4, with the identification ¢ = \~*.

min L(p,v)— min  L(u", vy,
veP(RY) (,u ) Vn€Pn(R4) (,u )




Empirical results: maximum-likelihood deconvolution

Compared to
Blahut-Arimoto
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Figure 2: Losses over iterations. Shading corresponds
to one standard deviation over random initializations.
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Figure 3: Visualizing p samples (top left), as
well as the v returned by various algorithms
compared to the ground truth v* (cyan).



Neural-network free upper bounds on R(D)

physics

- Significantly faster convergence than
neural-network-based methods.

. 4
- Bound tightness depends on the number of
. _ . =
particles used; no neural network architecture 2 2
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