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Motivation: info-theoretic limit of lossy compression
Lossy compression algorithms (e.g., JPEG) are typically evaluated on

- rate (“average file size”)
- distortion (reconstruction error)

https://yiboyang.com/posts/estimating-the-rate-distortion-function-of-real-world-data-part-1/ 
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Motivation: info-theoretic limit of lossy compression
Question: Given a data source and distortion metric, what’s the 
best possible rate-distortion (R-D) tradeoff?

Answer: the rate-distortion function [Shannon 1959]

This work (also see [Gibson 2017, Yang & Mandt 2022, Lei et 

al., 2023]): a new, neural network-free algorithm for 
estimating R(D) over continuous spaces, based on 
ideas/techniques from Optimal Transport.

No closed-form



The R-D problem, formally

Given: 1. (𝓧, 𝓨), a.k.a. the (data, reconstruction) alphabets (Polish spaces here).   

    2. Source distribution 𝜇 on 𝓧.

           3. Distortion metric ρ: 𝓧 × 𝓨 → [0, ∞)

We work with an equivalent “Lagrangian” parameterization of R(D), following 
[Blahut 1972, Arimoto 1972]



Background: optimal transport (OT)

Given: 1. (𝓧, 𝓨), a.k.a. the (source, destination) spaces.

    2. Source distribution 𝜇 on 𝓧., target distribution 𝜈 on 𝓨 .

    3. Cost function ρ: 𝓧 × 𝓨 → [0, ∞)

The Kantorovich problem:

Defines a metric (Wasserstein distance) b/w prob. measures if the cost ρ is a metric. 

Entropic regularization [Peyré 
and Cuturi, 2019, Chapter 4]:

𝜇

𝜈



Theoretical insights – part 1
The R-D problem (1) is equivalent to

   (2) Projection under an entropic OT cost;

(1) (2)

(3)

[Rigollet and Weed, 2018]Also see [Csiszár, 1974] 
and [Lei et al., 2023]

   (3) Deconvolution/denoising of the source (e.g., quadratic cost = Gaussian noise)



Theoretical insights – part 1
Thus,

- The convolution between a 
Gaussian and any distribution 
(e.g., Gaussian mixture with 
shared covariance) has a segment 
of R(D) available in closed-form;

- Provides a wide class of sources 
that can serve as test cases for 
algorithms.



Wasserstein gradient descent

Suppose 𝓧 = 𝓨 = ℝd, ρ continuously differentiable. Goal: 

Idea: simulate the gradient flow of the ℒ in the 2-Wasserstein space of probability 
measures [Santambrogio 2015]:

The Wasserstein gradient can be tractably computed by 

- Sinkhorn’s algorithm, for ℒ = ℒEOT , or
- A single Sinkhorn iteration, for ℒ = ℒBA (orders of magnitude faster!)

W. gradient :  ℝd
 →  ℝd



Wasserstein gradient descent

In practice, we maintain/update particles:



Theoretical insights (2)
The R-D problem is equivalent to “EOT projection”, therefore:

    Finite-sample bounds on estimating ℒEOT [Mena and Niles-Weed, 2019, Genevay et al., 
2019, Rigollet and Stromme, 2022]

    Finite-sample bounds on estimating R(D) [also see Harrison and Kontoyiannis, 2008]: 

implies



Empirical results: maximum-likelihood deconvolution
- Compared to 

Blahut-Arimoto 
and SOTA 
neural methods 
NERD [Lei et al., 

2023] and 
RD-VAE [Yang & 

Mandt, 2022].
- Faster 

convergence.
- Better solution 

quality.



Neural-network free upper bounds on R(D)
- Significantly faster convergence than 

neural-network-based methods.
- Bound tightness depends on the number of 

particles used; no neural network architecture 
tuning!
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