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Preliminaries: Physics-informed Neural Networks

How to train?
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Solving PDE with coordinate-based MLP (PINN)
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Motivation

• For a new data instance, training a new 
neural network is required. 

• “Failure mode” of PINNs

i) a low-rank structured neural network 
architecture for PINNs, i.e., LR-PINNs

ii) an efficient rank-revealing training 
algorithm, which adaptively adjust ranks of 
LR-PINNs for varying PDE inputs

iii) a two-phase procedure (offline training / 
online testing) for handling many-query 
scenarios

Limitation of PINNs Our proposed method includes:

➝ Not suitable for many-query scenarios 
(especially, parameterized PDEs)



4

Proposed Method

Low-rank PINN (LR-PINN) Hypernetwork based Low-rank PINN (Hyper-LR-PINN)

+ Meta 
learning
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Model architecture
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Experiments

Adaptive rank on convection equation (the left and the middle panels). The magnitude of the learned
diagonal elements of the second hidden layer (the right panel).
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Experiments



Lower computational cost in
many-query scenario
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Conclusion

[Helmholtz equation] Solution snapshots for 𝑎 = 2.5

[Convection equation] Solution snapshots for 𝛽 = 40

Resolving failure modes of PINNs


